Skip to main content
Log in

High-repetition-rate interferometric Rayleigh scattering for flow-velocity measurements

  • Rapid Communication
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

High-repetition-rate interferometric-Rayleigh-scattering (IRS) velocimetry is demonstrated for non-intrusive, high-speed flow-velocity measurements. High temporal resolution is obtained with a quasi-continuous burst-mode laser that is capable of operating at 10–100 kHz, providing 10-ms bursts with pulse widths of 5–1000 ns and pulse energy > 100 mJ at 532 nm. Coupled with a high-speed camera system, the IRS method is based on imaging the flow field through an etalon with 8-GHz free spectral range and capturing the Doppler shift of the Rayleigh-scattered light from the flow at multiple points having constructive interference. The seed-laser linewidth permits a laser linewidth of < 150 MHz at 532 nm. The technique is demonstrated in a high-speed jet, and high-repetition-rate image sequences are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. M.N. Slipchenko, J.D. Miller, S. Roy, J.R. Gord, S.S. Danczyk, T. Meyer, Quasi-continuous burst-mode laser for high-speed planar imaging. Opt. Lett. 37, 1346 (2012)

    Article  ADS  Google Scholar 

  2. N. Jiang, M. Nishihara, W.R. Lempert, Quantitative NO2 molecular tagging velocimetry at 500 kHz frame rate. Appl. Phys. Lett. 97, 221103 (2010)

    Article  ADS  Google Scholar 

  3. R.A. Patton, K.N. Gabet, N. Jiang, W.R. Lempert, J.A. Sutton, Multi-kHz temperature imaging in turbulent non-premixed flames using planar Rayleigh scattering. Appl. Phys. B 108, 377 (2012)

    Article  ADS  Google Scholar 

  4. K.N. Gabet, R.A. Patton, N. Jiang, W.R. Lempert, J.A. Sutton, High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system. Appl. Phys. B 106, 569 (2012)

    Article  ADS  Google Scholar 

  5. R.B. Miles, W.R. Lempert, J. N. Forkey. Laser Rayleigh scattering. Meas. Sci. Technol. 12, R33-R51 (2001)

    Article  Google Scholar 

  6. F. Mielke, K.A. Elam, C.J. Sung, Multi-property measurements at high sampling rates using Rayleigh scattering. AIAA J. 47, 850–862 (2009)

    Article  ADS  Google Scholar 

  7. D. Bivolaru, P.M. Danehy, J.W. Lee, Intracavity Rayleigh-Mie scattering for multipoint two-component velocity measurement. Opt. Lett. 31, 1645–1647 (2006)

    Article  ADS  Google Scholar 

  8. R.G. Seasholtz, A.E. Buggele, M.F. Reeder, Flow measurements based on Rayleigh scattering and Fabry-Perot interferometer. Opt. Lasers Eng. 27, 543–570 (1997)

    Article  Google Scholar 

  9. G.E. Elsinga, F. Scarano, B. Wieneke, B.W. van Oudheusden, Tomographic particle image velocimetry. Exp. Fluids 41, 933 (2006)

    Article  Google Scholar 

  10. T. Ecker, D.R. Brooks, K.T. Lowe, W.F. Ng, Development and application of a point Doppler velocimeter featuring two-beam multiplexing for time-resolved measurements of high-speed flow. Exp. Fluids 55, 1819 (2014)

    Article  Google Scholar 

  11. B. Thurow, N. Jiang, W. Lempert, M. Samimy, Development of megahertz-rate planar Doppler velocimetry for high speed flows. AIAA J. 43, 500–511 (2005)

    Article  ADS  Google Scholar 

  12. W.R. Lempert, N. Jiang, S. Sethuram, M. Samimy, Molecular tagging velocimetry measurements in supersonic microjets. AIAA J. 40, 1065–1070 (2002)

    Article  ADS  Google Scholar 

  13. S.V. Naik, W.D. Kulatilaka, K.K. Venkatesan, R.P. Lucht, Pressure, temperature, and velocity measurements in underexpanded jets using laser-induced fluorescence imaging. AIAA J. 47, 839–849 (2009)

    Article  ADS  Google Scholar 

  14. R.B. Miles, J. Grinstead, R.H. Kohl, G. Diskin, The RELIEF flow tagging technique and its application in engine testing facilities and for helium-air mixing studies. Meas. Sci. Technol. 11, 1272–1281 (2000)

    Article  ADS  Google Scholar 

  15. N.M. Sijtsema, N.J. Dam, R.J.H. Klein-Douwel, J.J. Meulen, Air photolysis and recombination tracking: a new molecular tagging velocimetry scheme. AIAA J. 40, 1061–1064 (2002)

    Article  ADS  Google Scholar 

  16. N.J. DeLuca, R.B. Miles, N. Jiang, W.D. Kulatilaka, A.K. Patnaik, J.R. Gord, FLEET velocimetry for combustion and flow diagnostics. Appl. Opt. 56, 8632–8638 (2017)

    Article  Google Scholar 

  17. J. Panda, R.G. Seasholtz, Measurement of shock structure and shock-vortex interaction in underexpanded jets using Rayleigh scattering. Phys. Fluids 11, 3761 (1999)

    Article  ADS  MATH  Google Scholar 

  18. K.B. Yüceil, M.V. Ötügen, E. Arik, Interferometric Rayleigh scattering and PIV measurements in the near field of underexpanded sonic jets. 41st AIAA Meeting, Reno, NV, 2003, AIAA-2003-0917 (2003)

  19. W. Sheng, S. Jin-Hai, H. Zhi-yun, Y. Jing-feng, L. Jing-Ru, Two-dimensional interferometric Rayleigh scattering velocimetry using multibeam probe laser. Opt. Eng. 56, 111705 (2017)

    Article  ADS  Google Scholar 

  20. L. Chen, F. Yang, T. Su, W. Bao, B. Yan, S. Chen, R. Li, High sampling rate measurement of turbulence velocity fluctuations in Mach 1.8 Laval jet using interferometric Rayleigh scattering. Chinese Phys. B 26, 025205 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Drs. Jayanta Panda and Amy Fagan of NASA for many helpful discussions. Dr. Jordi Estevadeordal acknowledges the AFRL Summer Faculty Fellowship Program and North Dakota State University support. Approved for public release; distribution unlimited (# 88ABW-2017-0533).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naibo Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estevadeordal, J., Jiang, N., Cutler, A.D. et al. High-repetition-rate interferometric Rayleigh scattering for flow-velocity measurements. Appl. Phys. B 124, 41 (2018). https://doi.org/10.1007/s00340-018-6908-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6908-y

Navigation