Advertisement

Applied Physics B

, 124:44 | Cite as

Impersonation attack on a quantum secure direct communication and authentication protocol with improvement

Article
  • 91 Downloads

Abstract

We analyze the security of a quantum secure direct communication and authentication protocol based on single photons. We first give an impersonation attack on the protocol. The cryptanalysis shows that there is a gap in the authentication procedure of the protocol so that an opponent can reveal the secret information by an undetectable attempt. We then propose an improvement for the protocol and show it closes the gap by applying a mutual authentication procedure. In the improved protocol single photons are transmitted once in a session, so it is easy to implement as the primary protocol. Furthermore, we use a novel technique for secret order rearrangement of photons by which not only quantum storage is eliminated also a secret key can be reused securely. So the new protocol is applicable in practical approaches like embedded system devices.

References

  1. 1.
    C.H. Bennett, G.Q. Brassard, Cryptography: public key distribution and coin tossing, in Proc. IEEE Conf. Computers Systems and Signal Processing (Bangalore, India) (IEEE, New York, 1984), p. 175 (December 1019)Google Scholar
  2. 2.
    P.W. Shor, J. Preskill, Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    M. Peev, C. Pacher, R. Allaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J.F. Dynes, S. Fasel, The SECOQC quantum key distribution network in Vienna. New J. Phys. 11(7), 075001 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    P. Schartner, C. Kollmitzer, Quantum-cryptographic networks from a prototype to the Citizen. Applied Quantum Cryptography, Springer, Berlin, Heidelberg, pp 173–184 (2010)Google Scholar
  5. 5.
    C. Kollmitzer, C. Moesslacher, The Ring of Trust Model. Applied Quantum Cryptography, Springer, Berlin, Heidelberg, pp 185–210 (2010)Google Scholar
  6. 6.
    Y. Chen, P.K. Verma, S. Kak, Embedded security framework for integrated classical and quantum cryptography services in optical burst switching networks. Secur. Commun. Netw. 2(6), 546–554 (2009)Google Scholar
  7. 7.
    W.P. Schleich, K.S. Ranade, C. Anton, M. Arndt, M. Aspelmeyer, M. Bayer, G. Berg, T. Calarco, H. Fuchs, E. Giacobino, M. Grassl, Quantum technology: from research to application. Appl. Phys. B 122(5), 130 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    M. Zwerger, H.J. Briegel, W. Dr, Measurement-based quantum communication. Appl. Phys. B 122(3), 50 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    M. Hillery, V. Buzek, A. Berthiaume, Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    H. Barnum, C. Crpeau, D. Gottesman, A. Smith, A. Tapp, Authentication of quantum messages. In Foundations of Computer Science, 2002. Proceedings. The 43rd Annual IEEE Symposium on IEEE (2002), pp. 449–458Google Scholar
  11. 11.
    D. Gottesman, I. Chuang, Quantum digital signatures. arXiv preprint quant-ph/0105032 (2001)Google Scholar
  12. 12.
    G.L. Long, X.S. Liu, Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    F.G. Deng, G.L. Long, Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Y.H. Chou, G.J. Zeng, F.J. Lin, C.Y. Chen, H.C. Chao, Quantum secure communication network protocol with entangled photons for mobile communications. Mobile Netw. Appl. 19(1), 121–130 (2014)CrossRefGoogle Scholar
  15. 15.
    G. Gao, Cryptanalysis and improvement of quantum secure communication network protocol with entangled photons for mobile communications. Phys. Scr. 89(12), 125102 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    T. Hwang, Y.P. Luo, C.W. Yang, T.H. Lin, Quantum authencryption: one-step authenticated quantum secure direct communications for off-line communicants. Quantum inform. Process. 13(4), 925–933 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Y.Y. Yang, A quantum secure direct communication protocol without quantum memories. Int. J. Theor. Phys. D 53(7), 2216–2221 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Y. Chang, C. Xu, S. Zhang, L. Yan, Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Chin. Sci. Bull. 59(21), 2541–2546 (2014)CrossRefGoogle Scholar
  19. 19.
    X. Zou, D. Qiu, Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57(9), 1696–1702 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    S. Hassanpour, M. Houshmand, Efficient controlled quantum secure direct communication based on GHZ-like states. Quantum Inform. Process. 14(2), 739–753 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    F.G. Deng, G.L. Long, X.S. Liu, Two-step quantum direct communica-tion protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    J. Hu, B. Yu, M. Jing, L. Xiao, S. Jia, G. Qin, G. Long, Experimental quantum secure direct communication with single photons. arXiv preprint arXiv:1503.00451 (2015)
  23. 23.
    S. Mi, T.J. Wang, G.S. Jin, C. Wang, High-capacity quantum secure direct communication with orbital angular momentum of photons. Photon. J. IEEE 7(5), 1–8 (2015)CrossRefGoogle Scholar
  24. 24.
    W. Zhang, D.S. Ding, Y.B. Sheng, L. Zhou, B.S. Shi, G.C. Guo, Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    K. Shih-Hung, H. Tzonelih, Cryptanalysis and improvement of controlled secure direct communication. Chin. Phys. B 22(6), 060308 (2013)CrossRefGoogle Scholar
  26. 26.
    L. Jun, L. Yi-Min, C. Hai-Jing, S. Shou-Hua, Z. Zhan-Jun, Revisiting quantum secure direct communication with W state. Chin. Phys. Lett. 23(10), 2652 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    F. Gao, S.J. Qin, Q.Y. Wen, F.C. Zhu, Cryptanalysis of multiparty controlled quantum secure direct communication using GreenbergerHorneZeilinger state. Opt. Commun. 283(1), 192–195 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    X.H. Li, F.G. Deng, H.Y. Zhou, Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    L. Jun, L. Yi-Min, X. Yan, Z. Zhan-Jun, Revisiting controlled quantum secure direct communication using a non-symmetric quantum channel with quantum superdense coding. Commun. Theor. Phys. 49(4):887 (2008)Google Scholar
  30. 30.
    T.H. Lin, C.W. Yang, T. Hwang, Attacks and improvement on Quantum direct communication with authentication. Int. J. Theor. Phys. 53(2), 597–602 (2014)CrossRefMATHGoogle Scholar
  31. 31.
    Y.G. Yang, Y.W. Teng, H.P. Chai, Q.Y. Wen, Revisiting the security of secure direct communication based on ping-pong protocol [Quantum Inf. Process. 8, 347 (2009)]. Quantum Inform. Process. 10(3), 317–323 (2011)CrossRefMATHGoogle Scholar
  32. 32.
    T.H. Lin, T. Hwang, Man-in-the-middle attack on quantum secure communications with authentication. Quantum inform. Process. 13(4), 917–923 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    S.J. Qin, F. Gao, Q.Y. Wen, F.C. Zhu, Improving the quantum secure direct communication by entangled qutrits and entanglement swapping against intercept-and-resend attack. Opt. Commun. 283(7), 1566–1568 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    M. Naseri, Comment on:secure direct communication based on ping-pong protocol [Quantum Inf. Process. 8, 347 (2009)]. Quantum Inform. Process. 9(6), 693–698 (2010)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Z.C. Zhu, A.Q. Hu, A.M. Fu, Cryptanalysis and improvement of the controlled quantum secure direct communication by using four particle cluster states. Int. J. Theor. Phys. 53(5), 1495–1501 (2014)CrossRefMATHGoogle Scholar
  36. 36.
    Z.H. Liu, H.W. Chen, D. Wang, W.Q. Li, Cryptanalysis and improvement of three-particle deterministic secure and high bit-rate direct quantum communication protocol. Quantum Inform. Process. 13(6), 1345–1351 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    C.H. Chang, Y.P. Luo, C.W. Yang, T. Hwang, Intercept-and-resend attack on controlled bidirectional quantum direct communication and its improvement. Quantum Inform. Process. 14(9), 3515–3522 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Q.L. Yue, C.H. Yu, B. Liu, Q.L. Wang, Cryptanalysis and improvement on robust EPR-pairs-based quantum secure communication with authentication resisting collective noise. Int. J. Theor. Phys. 55(10), 4262–4271 (2016)CrossRefMATHGoogle Scholar
  39. 39.
    Z. Liu, H. Chen, W. Liu, Cryptanalysis of controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Int. J. Theor. Phys. 55(10), 4564–4576 (2016)CrossRefMATHGoogle Scholar
  40. 40.
    Z.H. Liu, H.W. Chen, W.J. Liu, information leakage problem in efficient bidirectional quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 55(11), 4681–4686 (2016)CrossRefMATHGoogle Scholar
  41. 41.
    C. Zhang, H. Situ, Information leakage in efficient bidirectional quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 55(11), 4702–4708 (2016)CrossRefMATHGoogle Scholar
  42. 42.
    C.E. Shannon, Communication theory of secrecy systems. Bell Labs Tech. J. 28(4), 656–715 (1949)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    C. Portmann, Key recycling in authentication. IEEE Trans. Inf. Theory 60(7), 4383–4396 (2014)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Y. Chang, C. Xu, S. Zhang, L. Yan, Quantum secure direct communication and authentication protocol with single photons. Chin. Sci. Bull. 58(36), 4571–4576 (2013)CrossRefGoogle Scholar
  45. 45.
    J. Wang, Q. Zhang, C.J. Tang, Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A 358(4), 256–258 (2006)ADSCrossRefMATHGoogle Scholar
  46. 46.
    A.D. Zhu, Y. Xia, Q.B. Fan, S. Zhang, Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73(2), 022338 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    B. Schneier, Applied cryptography: protocols, algorithms, and source code in C (Wiley, New York, 2007)MATHGoogle Scholar
  48. 48.
    T.O. e Silva, S. Herzog, S. Pardi, Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4 × 1018. Math. Comput. 83(288), 2033–2060 (2014)Google Scholar
  49. 49.
    H. Lai, J. Xiao, M.A. Orgun, L. Xue, J. Pieprzyk, Quantum direct secret sharing with efficient eavesdropping-check and authentication based on distributed fountain codes. Quantum Inf. Process. 13(4), 895–907 (2014)ADSCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MathematicsIran University of Science and TechnologyTehranIran

Personalised recommendations