Efficient and robust photo-ionization loading of beryllium ions

Abstract

We demonstrate the efficient generation of \(\hbox {Be}^+\) ions with a 60 ns and 150 nJ laser pulse near 235 nm for two-step photo-ionization, proven by subsequent counting of the number of ions loaded into a linear Paul trap. The bandwidth and power of the laser pulse are chosen in such a way that a first, resonant step fully saturates the entire velocity distribution of beryllium atoms effusing from a thermal oven. The second excitation step is driven by the same light field causing efficient non-resonant ionization. Our ion-loading scheme has a similar efficiency as compared to former pathways using two-photon continuous wave laser excitation, but with an order of magnitude lower than average UV light power.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    Clark-MXR Orc-1000

  2. 2.

    Roditi International Corporation

  3. 3.

    with a total of four different laser mirror sets

  4. 4.

    Crysmit Photonics Co

  5. 5.

    Thorlabs, HL63133DG

  6. 6.

    Toptica, HF-ANGSTROM WS/U-30U

  7. 7.

    the beam diameters are calculated according to ISO 11145

References

  1. 1.

    D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W.M. Itano, B. Jelenković, C. Langer, T. Rosenband et al., Nature 422, 412 (2003)

    ADS  Article  Google Scholar 

  2. 2.

    F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G.P. Lancaster, T. Deuschle, C. Becher, C.F. Roos, J. Eschner, R. Blatt, Nature 422, 408 (2003)

    ADS  Article  Google Scholar 

  3. 3.

    D. Moehring, P. Maunz, S. Olmschenk, K. Younge, D. Matsukevich, L.-M. Duan, C. Monroe, Nature 449, 68 (2007)

    ADS  Article  Google Scholar 

  4. 4.

    G. Morigi, H. Walther, Eur. Phys. J. D-Atomic Mol. Opt. Plasma Phys. 13, 261 (2001)

    Google Scholar 

  5. 5.

    H. Kaufmann, T. Ruster, C. Schmiegelow, M. Luda, V. Kaushal, J. Schulz, D. von Lindenfels, F. Schmidt-Kaler, U. Poschinger, Phys. Rev. Lett. 119, 150503 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    A.D. Ludlow, M.M. Boyd, J. Ye, E. Peik, P.O. Schmidt, Rev. Mod. Phys. 87, 637 (2015)

    ADS  Article  Google Scholar 

  7. 7.

    J. Keller, T. Burgermeister, D. Kalincev, J. Kiethe, T. Mehlstäubler, J. Phys. Conf. Ser. 723, 012027 (2016). (IOP Publishing, 2016)

    Article  Google Scholar 

  8. 8.

    J. Keller, H. Partner, T. Burgermeister, T. Mehlstäubler, J. Appl. Phys. 118, 104501 (2015)

    ADS  Article  Google Scholar 

  9. 9.

    N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, E. Peik, Phys. Rev. Lett. 116, 063001 (2016)

    ADS  Article  Google Scholar 

  10. 10.

    N. Kjærgaard, L. Hornekær, A. Thommesen, Z. Videsen, M. Drewsen, Appl. Phys. B Lasers Opt. 71, 207 (2000)

    ADS  Article  Google Scholar 

  11. 11.

    S. Gulde, D. Rotter, P. Barton, F. Schmidt-Kaler, R. Blatt, W. Hogervorst, Appl. Phys. B 73, 861 (2001)

    ADS  Article  Google Scholar 

  12. 12.

    H.-Y. Lo, J. Alonso, D. Kienzler, B.C. Keitch, L.E. de Clercq, V. Negnevitsky, J.P. Home, Appl. Phys. B 114, 17 (2014)

    ADS  Article  Google Scholar 

  13. 13.

    R. B. Blakestad, Transport of trapped-ion qubits within a scalable quantum processor, Ph.D. thesis, University of Colorado at Boulder, 2010

  14. 14.

    N. Daniilidis, S. Gerber, G. Bolloten, M. Ramm, A. Ransford, E. Ulin-Avila, I. Talukdar, H. Häffner, Phys. Rev. B 89, 245435 (2014)

    ADS  Article  Google Scholar 

  15. 15.

    D.A. Hite, Y. Colombe, A.C. Wilson, K.R. Brown, U. Warring, R. Jördens, J.D. Jost, K. McKay, D. Pappas, D. Leibfried et al., Phys. Rev. Lett. 109, 103001 (2012)

    ADS  Article  Google Scholar 

  16. 16.

    A. Windberger, J.C. López-Urrutia, H. Bekker, N. Oreshkina, J. Berengut, V. Bock, A. Borschevsky, V. Dzuba, E. Eliav, Z. Harman et al., Phys. Rev. Lett. 114, 150801 (2015)

    ADS  Article  Google Scholar 

  17. 17.

    J.-P. Uzan, Rev. Mod. Phys. 75, 403 (2003)

    ADS  Article  Google Scholar 

  18. 18.

    A. Derevianko, V. Dzuba, V. Flambaum, Phys. Rev. Lett. 109, 180801 (2012)

    ADS  Article  Google Scholar 

  19. 19.

    K. Ledingham, R. Singhal, Int. J. Mass Spectrom. Ion Process. 163, 149 (1997)

    ADS  Article  Google Scholar 

  20. 20.

    J. Yi, C. Geppert, R. Horn, K. Wendt, Jpn. J. Appl. Phys. 42, 5066 (2003)

    ADS  Article  Google Scholar 

  21. 21.

    S. Rothe, B. Marsh, C. Mattolat, V. Fedosseev, K. Wendt, J. Phys. Conf. Ser. 312, 052020 (2011). (IOP Publishing, 2011)

    Article  Google Scholar 

  22. 22.

    V. Sonnenschein, I. Moore, H. Khan, I. Pohjalainen, M. Reponen, Hyperfine Interact. 227, 113 (2014)

    ADS  Article  Google Scholar 

  23. 23.

    D. Leibfried, Private Communication (National Institute of Standards and Technology, Boulder, 2018)

    Google Scholar 

  24. 24.

    L. Giver, B. Gentry, G. Schwemmer, T. Wilkerson, J. Quant. Spectrosc. Radiat. Transf. 27, 423 (1982)

    ADS  Article  Google Scholar 

  25. 25.

    G. Jacob, K. Groot-Berning, S. Wolf, S. Ulm, L. Couturier, S.T. Dawkins, U.G. Poschinger, F. Schmidt-Kaler, K. Singer, Phys. Rev. Lett. 117, 043001 (2016)

    ADS  Article  Google Scholar 

  26. 26.

    G. Blume, O. Nedow, D. Feise, J. Pohl, K. Paschke, Opt. Express 21, 21677 (2013)

    ADS  Article  Google Scholar 

  27. 27.

    F. Cozijn, J. Biesheuvel, A. Flores, W. Ubachs, G. Blume, A. Wicht, K. Paschke, G. Erbert, J. Koelemeij, Opt. Lett. 38, 2370 (2013)

    ADS  Article  Google Scholar 

  28. 28.

    P. Smith, C. Heise, J. Esmond, Atomic spectral line database from cd-rom 23 of rl kurucz. cambridge: Smithsonian astrophysical observatory, (1995)

  29. 29.

    https://riliselements.web.cern.ch/riliselements/index.php

Download references

Acknowledgements

We acknowledge support from the DFG through the DIP program (Grant no. SCHM 1049/7-1), within the cluster of excellence PRISMA and from the EU through ENSAR2 RESIST (Grant no. 654002).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sebastian Wolf.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wolf, S., Studer, D., Wendt, K. et al. Efficient and robust photo-ionization loading of beryllium ions. Appl. Phys. B 124, 30 (2018). https://doi.org/10.1007/s00340-018-6903-3

Download citation