Skip to main content

520-µJ mid-infrared femtosecond laser at 2.8 µm by 1-kHz KTA optical parametric amplifier

Abstract

We report on a 520-µJ, 1-kHz mid-infrared femtosecond optical parametric amplifier system driven by a Ti:sapphire laser system. The seeding signal was generated from white-light continuum in YAG plate and then amplified in four non-collinear amplification stages and the idler was obtained in the last stage with central wavelength at 2.8 µm and bandwidth of 525 nm. To maximize the bandwidth of the idler, a theoretical method was developed to give an optimum non-collinear angle and estimate the conversion efficiency and output spectrum. As an experimental result, laser pulse energy up to 1.8 mJ for signal wave and 520 µJ for idler wave were obtained in the last stage under 10-mJ pump energy, corresponding to a pump-to-idler conversion efficiency of 5.2%, which meets well with the numerical calculation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. P. Colosimo, G. Doumy, C.I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A.M. March, G.G. Paulus, H.G. Muller, P. Agostini, L.F. DiMauro, Nat Phys. 4, 386 (2008)

    Article  Google Scholar 

  2. B. Shan, Z. Chang, Phys. Rev. A. 65, 011804 (2001)

    ADS  Article  Google Scholar 

  3. A.D. Shiner, C. Trallero-Herrero, N. Kajumba, H.C. Bandulet, D. Comtois, F. Légaré, M. Giguère, J.C. Kieffer, P.B. Corkum, D.M. Villeneuve, Phys. Rev. Lett. 103, 073902 (2009)

    ADS  Article  Google Scholar 

  4. Y. Deng, A. Schwarz, H. Fattahi, M. Ueffing, X. Gu, M. Ossiander, T. Metzger, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, G. Marcus, F. Krausz, R. Kienberger, N. Karpowicz, Opt. Lett. 37, 4973 (2012)

    ADS  Article  Google Scholar 

  5. K.-H. Hong, C.-J. Lai, J.P. Siqueira, P. Krogen, J. Moses, C.-L. Chang, G.J. Stein, L.E. Zapata, F.X. Kärtner, Opt. Lett. 39, 3145 (2014)

    ADS  Article  Google Scholar 

  6. Y. Yin, J. Li, X. Ren, K. Zhao, Y. Wu, E. Cunningham, Z. Chang, Opt. Lett. 41, 1142 (2016)

    ADS  Article  Google Scholar 

  7. S.L. Cousin, F. Silva, S. Teichmann, M. Hemmer, B. Buades, J. Biegert, Opt. Lett. 39, 5383 (2014)

    ADS  Article  Google Scholar 

  8. M.C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M.M. Murnane, H.C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010)

    ADS  Article  Google Scholar 

  9. J. Li, X. Ren, Y. Yin, Y. Cheng, E. Cunningham, Y. Wu, Z. Chang, Appl. Phys. Lett. 108, 231102 (2016)

    ADS  Article  Google Scholar 

  10. J. Li, X. Ren, Y. Yin, K. Zhao, A. Chew, Y. Cheng, E. Cunningham, Y. Wang, S. Hu, Y. Wu, Nat. Commun. 8 (2017)

  11. G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M.M. Murnane, H.C. Kapteyn, Opt. Lett. 36, 2755 (2011)

    ADS  Article  Google Scholar 

  12. K. Zhao, H. Zhong, P. Yuan, G. Xie, J. Wang, J. Ma, L. Qian, Opt. Lett. 38, 2159 (2013)

    ADS  Article  Google Scholar 

  13. T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O.D. Mücke, A. Pugzlys, Science 336, 1287 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  14. S. Wandel, G. Xu, Y. Yin, I. Jovanovic, J. Phys. B: At. Mol. Opt. Phys. 47, 234016 (2014)

    ADS  Article  Google Scholar 

  15. S. Wandel, M.-W. Lin, Y. Yin, G. Xu, I. Jovanovic, Opt. Express. 24, 5287 (2016)

    ADS  Article  Google Scholar 

  16. L. von Grafenstein, M. Bock, D. Ueberschaer, K. Zawilski, P. Schunemann, U. Griebner, T. Elsaesser, Opt. Lett. 42, 3796 (2017)

    ADS  Article  Google Scholar 

  17. M. Baudisch, M. Hemmer, H. Pires, J. Biegert, Opt. Lett. 39, 5802 (2014)

    ADS  Article  Google Scholar 

  18. Y. Chen, Y. Li, W. Li, X. Guo, Y. Leng, Opt. Commun. 365, 7 (2016)

    ADS  Article  Google Scholar 

  19. Y. Yin, X. Ren, A. Chew, J. Li, Y. Wang, F. Zhuang, Y. Wu, Z. Chang, Sci. Reports 7, 11097 (2017)

    ADS  Article  Google Scholar 

  20. A. Baltuška, T. Fuji, T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002)

    ADS  Article  Google Scholar 

  21. Q. Zhang, E.J. Takahashi, O.D. Mücke, P. Lu, K. Midorikawa, Opt. Express. 19, 7190 (2011)

    ADS  Article  Google Scholar 

  22. Y. Yin, J. Li, X. Ren, Y. Wang, A. Chew, Z. Chang, Opt. Express. 24, 24989 (2016)

    ADS  Article  Google Scholar 

  23. B.-Q. Chen, C. Zhang, C.-Y. Hu, R.-J. Liu, Z.-Y. Li, Phys. Rev. Lett. 115, 083902 (2015)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Key Scientific Instruments Development Program of China (2012YQ120047), the National Natural Science Foundation of China under Grant Nos. 61575217 and 11774410, and the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No. XDB16030200

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaohua Wang or Zhiyi Wei.

Additional information

This article is part of the topical collection “Mid-infrared and THz Laser Sources and Applications” guest edited by Wei Ren, Paolo De Natale and Gerard Wysocki.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, H., Wang, Z., Hu, C. et al. 520-µJ mid-infrared femtosecond laser at 2.8 µm by 1-kHz KTA optical parametric amplifier. Appl. Phys. B 124, 31 (2018). https://doi.org/10.1007/s00340-018-6896-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6896-y