Skip to main content
Log in

Optically pumped lasing in a rolled-up dot-in-a-well (DWELL) microtube via the support of Au pad

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report the observation of optically pumped continuous wave lasing in a self-rolled-up InGaAs/GaAs quantum dot microtube at room temperature. Single layer of InAs quantum dots (~ 2.6 ML coverage) in a GaAs well sandwiched by two AlGaAs barriers are incorporated into the tube wall as the gain media. As-fabricated microtube is supported by a 300-nm-thick Au pad, aiming to separate the tube from GaAs substrate and thus to decrease the substrate loss, which finally enables lasing with ultralow threshold power (~ 4 µW) from an microtube ring resonator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V.Y. Prinz, V.A. Seleznev, A.K. Gutakovsky, A.V. Chehovskiy, V.V. Preobrazhenskii, M.A. Putyato, T.A. Gavrilova, Phys. E. 6, 828 (2000)

    Article  Google Scholar 

  2. T. Kipp, H. Welsch, Ch Strelow, Ch Heyn, D. Heitmann, Phys. Rev. Lett. 96, 077403 (2006)

    Article  ADS  Google Scholar 

  3. Ch Strelow, H. Rehberg, C.M. Schultz, H. Welsch, Ch Heyn, D. Heitmann, T. Kipp, Phys. Rev. Lett. 101, 127403 (2008)

    Article  ADS  Google Scholar 

  4. S. Chun, K. Bassett, A. Challa, X. Li, Appl. Phys. Lett. 96, 251106 (2010)

    Article  ADS  Google Scholar 

  5. Z. Tian, V. Veerasubramanian, P. Bianucci, S. Mukherjee, Z. Mi, A.G. Kirk, D.V. Plant, Opt. Express. 19, 12164 (2011)

    Article  ADS  Google Scholar 

  6. Q. Zhong, Z. Tian, V. Veerasubramanian, M.H.T. Dastjerdi, Z. Mi, D.V. Plant, Opt. Lett. 39, 2699 (2014)

    Article  ADS  Google Scholar 

  7. S. Bhowmick, T. Frost, P. Bhattacharya, Opt. Lett. 38, 1685 (2013)

    Article  ADS  Google Scholar 

  8. G. Huang, V.A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, O.G. Schmidt, ACS Nano. 4, 3123 (2010)

    Article  Google Scholar 

  9. V.A.B. Quinones, L. Ma, S. Li, M. Jorgensen, S. Kiravittaya, O.G. Schmidt, Appl. Phys. Lett. 101, 151107 (2012)

    Article  ADS  Google Scholar 

  10. S. Tang, Y. Fang, Z. Liu, L. Zhou, Y. Mei, Lab Chip. 16, 182 (2016)

    Article  Google Scholar 

  11. C. Jiang, G. Huang, S. Ding, H. Dong, C. Men, Y. Mei, Nanoscale. Res. Lett. 11, 289 (2016)

    Article  ADS  Google Scholar 

  12. Y. Zhang, D. Han, D. Du, G. Huang, T. Qiu, Y. Mei, Plasmonics. 10, 949 (2015)

    Article  Google Scholar 

  13. J. Zhang, J. Li, S. Tang, Y. Fang, J. Wang, G. Huang, R. Liu, L. Zheng, X. Cui, Y. Mei, Sci. Reps. 5, 15012 (2015)

    Article  ADS  Google Scholar 

  14. C.H. Strelow, M. Sauer, S. Fehringer, T. Korn, C. Schüller, D. Heitmann, T. Kipp, A. Stemmann, C.H. Heyn, Appl. Phys. Lett. 95, 221115 (2009)

    Article  ADS  Google Scholar 

  15. F. Li, Z. Mi, Opt. Express. 17, 19933 (2009)

    Article  ADS  Google Scholar 

  16. M.H.T. Dastjerdi, M. Djavid, S. Arafin, X. Liu, P. Bianucci, Z. Mi, P.J. Poole, Semicond. Sci. Technol. 28, 094007 (2013)

    Article  ADS  Google Scholar 

  17. J. Heo, S. Bhowmick, P. Bhattacharya, IEEE J. Quantum Electron. 48, 927 (2012)

    Article  ADS  Google Scholar 

  18. M.H.T. Dastjerdi, M. Djavid, Z. Mi, App. Phys. Lett. 106, 021114 (2015)

    Article  ADS  Google Scholar 

  19. M. Grundmann, J. Christen, N.N. Ledentsov, J. Böhrer, D. Bimberg, S.S. Ruvimov, P. Werner, U. Richter, U. Gösele, J. Heydenreich, V.M. Ustinov, A.Yu.. Egorov, A.E. Zhukov, P.S. Kop’ev, Z.I. Alferov, Phys. Rev. Lett. 74, 4043 (1995)

    Article  ADS  Google Scholar 

  20. Q. Wang, Y. Gao, G. Mao, H. Liu, X. Ren, Appl. Phys. Lett. 107, 082108 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61474008 and 61674020), Program for New Century Excellent Talents in University of China (NCET-13-0686), International Science & Technology Cooperation Program of China (No. 2011DFR11010) and the 111 Project (No. B07005). Alexey E. Zhukov would like to thank the Russian Ministry of Education and Sciences (Grant 3.784.2016/3.5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, Z., Wang, Q., Cao, J. et al. Optically pumped lasing in a rolled-up dot-in-a-well (DWELL) microtube via the support of Au pad. Appl. Phys. B 124, 21 (2018). https://doi.org/10.1007/s00340-018-6895-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6895-z

Navigation