Skip to main content

Nanosecond nonlinear optical and optical limiting properties of hollow gold nanocages

Abstract

Gold nanocages (NCs) were prepared using the galvanic replacement reaction. Transmission electron microscopy images confirmed the porous morphology and completely hollow interior of the gold NCs. The nanosecond nonlinear optical and optical limiting (OL) properties of the NCs were characterized using the open-aperture Z-scan technique with 8-ns laser pulses at 532 nm. The gold NCs exhibited intensity-dependent transformation from saturable absorption to reverse-saturable absorption. The nonlinear absorption coefficient and saturable energy of the NCs were 5 × 10− 12 m/W and 2.5 × 1010 W/m2, respectively. Meanwhile, the gold NCs were found to display strong OL properties towards nanosecond laser pulses. The OL threshold of the gold NCs was lower than that of solid gold nanoparticles and comparable with that of a carbon nanotube suspension. Input fluence and angle-dependent scattering measurements indicated that nonlinear scattering plays an important role in the OL behavior of the gold nanostructures at high laser excitation. The improved OL response in gold NCs was discussed from the viewpoint of structural characteristic. The ultrathin and highly porous walls of the gold NCs can effectively transfer the photon-induced heat to the surrounding solvent, resulting in enhanced OL properties compared with those of solid gold nanoparticles. The intensity-dependent transformation from saturable absorption to reverse-saturable absorption and excellent OL response indicate that the smart gold NCs with ultrathin and highly porous walls can be considered as potential candidate in pulse shaping, passive mode locking, and eye protection against powerful lasers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Z.H. Shi, Y.S. Zhou, L.J. Zhang, C.C. Mu, H.Z. Ren, D. Hassan, D. Yang, H.M. Asif, New supramolecular compounds based on porphyrin and polyoxometalate: synthesis, characterization and nonlinear optical and optical limiting properties. RSC Adv. 4, 50277–50284 (2014)

    Article  Google Scholar 

  2. S.A. Fischer, C.J. Cramer, N. Govind, Excited-state absorption from real-time time-dependent density functional theory: optical limiting in Zinc phthalocyanine. J. Phys. Chem. Lett. 7:1387–1391 (2016)

    Article  Google Scholar 

  3. Y. Zhang, Y.P. Song, Y. Gan, M. Feng, H.B. Zhan, Broadband nonlinear optical and optical limiting effects of partially unzipped carbon nanotubes. J. Mater. Chem. C 3, 9948–9954 (2015)

    Article  Google Scholar 

  4. L. Wang, W.-Y. Wang, X.-Y. Fang, C.-L. Zhu, Y.-Q. Qiu, Intramolecular photo-induced electron transfer in nonlinear optical chromophores: fullerene (C60) derivatives. Org. Electron 33, 290–299 (2016)

    Article  Google Scholar 

  5. N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, S. Couris, Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids. J. Phys. Chem. C 117, 6842–6850. (2013)

    Article  Google Scholar 

  6. O. Muller, S. Dengler, G. Ritt, B. Eberle, Size and shape effects on the nonlinear optical behavior of silver nanoparticles for power limiters. Appl. Opt. 52, 139–149 (2013)

    Article  ADS  Google Scholar 

  7. S. Valligatla, K.K. Haldar, A.P. Narayana, R. Desai, Nonlinear optical switching and optical limiting in colloidal CdSe quantum dots investigated by nanosecond Z-scan measurement. Opt. Laser Technol. 84, 87–93 (2016)

    Article  ADS  Google Scholar 

  8. S. Afewerki, A. Córdova, Combinations of aminocatalysts and metal catalysts: a powerful cooperative approach in selective organic synthesis. Chem. Rev. 116, 13512–13570 (2016)

    Article  Google Scholar 

  9. S. Her, D.A. Jaffray, C. Allen, Gold nanoparticles for applications in cancer radiotherapy: mechanisms and recent advancements. Adv. Drug Delver. Rev. 109, 84–101 (2017)

    Article  Google Scholar 

  10. H. Tian, M.L. Chin, S. Najmaei, Q.S. Guo, F.N. Xia, H. Wang, M. Dubey, Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 9, 1543–1560 (2016)

    Article  Google Scholar 

  11. Y. Hua, K. Chandra, D.H.M. Dam, G.P. Wiederrecht, T.W. Odom, Shape-dependent nonlinear optical properties of anisotropic gold nanoparticles. J. Phys. Chem. Lett. 6, 4904–4908 (2015)

    Article  Google Scholar 

  12. I. Russier-Antoine, F. Bertorelle, M. Vojkovic, D. Rayane, E. Salmon, C. Jonin, P. Dugourd, R. Antoine, P.-F. Brevet, Non-linear optical properties of gold quantum clusters. The smaller the better. Nanoscale 6, 13572–13578 (2014)

    Article  ADS  Google Scholar 

  13. E.V. García-Ramírez, S. Almaguer-Valenzuela, O. Sánchez-Dena, O. Baldovino- Pantaleón, J.A. Reyes-Esqueda, Third-order nonlinear optical properties of colloidal Au nanorods systems: saturable and reverse-saturable absorption. Opt. Express 12, 251135 (2015)

    Google Scholar 

  14. C. Zheng, W. Li, W.Z. Chen, X.Y. Ye, Nonlinear optical behavior of silver nanopentagons. Mater. Lett. 116, 1–4 (2014)

    Article  Google Scholar 

  15. S.L. Smitha, K.G. Gopchandran, N. Smijesh, R.J. Philip, Size-dependent optical properties of Au nanorods. Prog. Nat. Sci. 23, 36–43 (2013)

    Article  Google Scholar 

  16. O. Sánchez-Dena, P. Mota-Santiago, L. Tamayo-Rivera, E.V. García-Ramírez, A. Crespo-Sosa, A. Oliver, J.-A. Reyes-Esqueda, Size-and shape-dependent nonlinear optical response of Au nanoparticles embedded in sapphire. Opt. Mater. Express 92, 198213 (2013)

    Google Scholar 

  17. H. Lunden, A. Liotta, D. Chateau, F. Lerouge, F. Chaput, S. Parola, C. Brannlund, Z. Ghadyani, M. Kildemo, M. Lindgren, C. Lopes, Dispersion and self-orientation of gold nanoparticles in sol–gel hybrid silica—optical transmission properties. J. Mater. Chem. C 3, 1026–1034 (2015)

    Article  Google Scholar 

  18. R. Rajaramakrishna, C. Saiyasombat, R.V. Anavekar, H. Jain, Structure and nonlinear optical studies of Au nanoparticles embedded in lead lanthanum borate glass. J. Non-Cryst. Solids 406, 107–110 (2014)

    Article  ADS  Google Scholar 

  19. J.M.P. Juliana, D.S. da Silva, L.R.P. Kassab, S.C. Zilio, C.R. Mendon, L. De Boni, Ultrafast third-order optical nonlinearities of heavy metal oxide glasses containing gold nanoparticles. Opt. Mater. 36, 829–832 (2014)

    Article  ADS  Google Scholar 

  20. J.Z. Dong, X.L. Zhang, Y.A. Gao, W.S. Yang, J.G. Tian, Shape dependence of nonlinear optical behaviors of gold nanoparticles. Mater. Lett. 65, 2665–2668 (2011)

    Article  Google Scholar 

  21. J. Zeng, Q. Zhang, J.Y. Chen, Y.N. Xia, A Comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett. 10, 30–35 (2010)

    Article  ADS  Google Scholar 

  22. M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W.V. Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE Quantum Electron 26, 760–769 (1990)

    Article  ADS  Google Scholar 

  23. S. Link, M.A. EI-Sayed, Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212–4217 (1999)

    Article  Google Scholar 

  24. B. Wiley, Y.G. Sun, B. Mayers, Y.N. Xia, Shape-controlled synthesis of metal nanostructures: the case of silver. Chem. Eur. J. 11, 454–463 (2005)

    Article  Google Scholar 

  25. A. Zoppi, S. Trigari, E. Giorgetti, M. Muniz-Miranda, M. Alloisio, A. Demartini, G. Dellepiane, S. Thea, G. Dobrikov, I. Timtcheva, Functionalized Au/Ag nanocages as a novel fluorescence and SERS dual probe for sensing. J. Colloid Interf. Sci. 407, 89–94 (2013)

    Article  ADS  Google Scholar 

  26. H.H. Mai, V.E. Kaydashev, V.K. Tikhomirov, E. Janssens, M.V. Shestakov, M. Meledina, S. Turner, G.V. Tendeloo, V.V. Moshchalkov, P. Lievens, Nonlinear optical properties of Ag nanoclusters and nanoparticles dispersed in a glass host. J. Phys. Chem. C 118, 15995–16002 (2014)

    Article  Google Scholar 

  27. X. Zhang, W. Luo, L.-J. Wang, W. Jiang, Third-order nonlinear optical vitreous material derived from mesoporous silica incorporated with Au nanoparticles.” J. Mater. Chem. C 2, 6966–6970 (2014)

    Article  Google Scholar 

  28. P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, K.L. Tan, Electronic structure and optical limiting behavior of carbon nanotubes. Phys. Rev. Lett. 82, 2548–2551 (1999)

    Article  ADS  Google Scholar 

  29. G. Wang, W.F. Sun, Optical limiting of gold nanoparticle aggregates induced by electrolytes. J. Phys. Chem. B 110, 20901 (2006)

    Article  Google Scholar 

  30. H. Pan, W.Z. Chen, Y.P. Feng, W. Ji, J.Y. Lin, Optical limiting properties of metal nanowires. Appl. Phys. Lett. 88, 223106 (2006)

    Article  ADS  Google Scholar 

  31. Y. Chen, Y. Lin, Y. Liu, J. Doyle, N. He, X.D. Zhuang, J.R. Bai, W.J. Blau, Carbon nanotube-based functional materials for optical limiting. J. Nanosci. Nanotechnol. 7, 1268–1283 (2007)

    Article  Google Scholar 

  32. M. Feng, H.B. Zhan, Y. Chen, Nonlinear optical and optical limiting properties of graphene families. Appl. Phys. Lett. 96, 033107 (2010)

    Article  ADS  Google Scholar 

  33. J. Wang, Y. Hernandez, M. Lotya, J.N. Coleman, W.J. Blau, Broadband nonlinear optical response of graphene dispersions. Adv. Mater. 21, 2430–2435 (2009)

    Article  Google Scholar 

  34. L. Polavarapu, N. Venkatram, W. Ji, Q.H. Xu, Optical-limiting properties of oleylamine-capped gold nanoparticles for both femtosecond and nanosecond laser pulses. ACS Appl. Mater. Interfaces 1, 2298–2303 (2009)

    Article  Google Scholar 

  35. L. Francois, M. Mostafavi, J. Belloni, J.A. Delaire, Optical limitation induced by gold clusters: mechanism and efficiency. Phys. Chem. Chem. Phys. 3, 4965–4971 (2001)

    Article  Google Scholar 

  36. J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M.J. Welch, Y. Xia, Gold nanocages as photothermal transducers for cancer treatment. Small 6, 811–817 (2010)

    Article  Google Scholar 

  37. R. Robinson, W. Gerlach, H. Ghandehari, Comparative effect of gold nanorods and nanocages for prostate tumor hyperthermia. J. Controll Release 220, 245–252 (2015)

    Article  Google Scholar 

  38. H.F. Wang, J. Han, W.S. Lu, J.P. Zhang, J.R. Li, L. Liang, Facile preparation of gold nanocages and hollow gold nanospheres via solvent thermal treatment and their surface plasmon resonance and photothermal properties. J Colloid Interface Sci. 440, 236–244 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61108056); Major Projects of the University of Fujian Province (2015N5007); and the Youth Natural Fund Key Project of Fujian Province (Grant No. JZ160462).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Zheng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, C., Huang, J., Lei, L. et al. Nanosecond nonlinear optical and optical limiting properties of hollow gold nanocages. Appl. Phys. B 124, 17 (2018). https://doi.org/10.1007/s00340-017-6888-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6888-3