Skip to main content

Accuracy of non-resonant laser-induced thermal acoustics (LITA) in a convergent–divergent nozzle flow


Non-resonant laser-induced thermal acoustics (LITA) was applied to measure Mach number, temperature and turbulence level along the centerline of a transonic nozzle flow. The accuracy of the measurement results was systematically studied regarding misalignment of the interrogation beam and frequency analysis of the LITA signals. 2D steady-state Reynolds-averaged Navier–Stokes (RANS) simulations were performed for reference. The simulations were conducted using ANSYS CFX 18 employing the shear-stress transport turbulence model. Post-processing of the LITA signals is performed by applying a discrete Fourier transformation (DFT) to determine the beat frequencies. It is shown that the systematical error of the DFT, which depends on the number of oscillations, signal chirp, and damping rate, is less than \(1.5\%\) for our experiments resulting in an average error of \(1.9\%\) for Mach number. Further, the maximum calibration error is investigated for a worst-case scenario involving maximum in situ readjustment of the interrogation beam within the limits of constructive interference. It is shown that the signal intensity becomes zero if the interrogation angle is altered by \(2\%\). This, together with the accuracy of frequency analysis, results in an error of about \(5.4\%\) for temperature throughout the nozzle. Comparison with numerical results shows good agreement within the error bars.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17


  1. F.J. Förster, S. Baab, G. Lamanna, B. Weigand, Appl. Phys. B 121(3), 235–248 (2015).

    ADS  Article  Google Scholar 

  2. E.B. Cummings, Laser-induced thermal acoustics. Ph.D. thesis, California Institute of Technology (1995)

  3. S. Schlamp, E.B. Cummings, T.H. Sobota, Opt. Lett. 25(4), 224–226 (2000).

    ADS  Article  Google Scholar 

  4. A. Stampanoni-Panariello, D.N. Kozlov, P.P. Radi, B. Hemmerling, Appl. Phys. B 81(1), 101–111 (2005).

    ADS  Article  Google Scholar 

  5. N.C. Dröske, F.J. Förster, B. Weigand, J. von Wolfersdorf, Acta Astronaut. 132, 177–191 (2017).

    ADS  Article  Google Scholar 

  6. S. Baab, F.J. Förster, G. Lamanna, B. Weigand, Exp. Fluids 57(11), 172 (2016).

    Article  Google Scholar 

  7. D.N. Kozlov, Appl. Phys. B 80(3), 377–387 (2005).

    ADS  Article  Google Scholar 

  8. M. Neracher, W. Hubschmid, Appl. Phys. B 79(6), 783–791 (2004).

    ADS  Article  Google Scholar 

  9. R.C. Hart, R.J. Balla, G.C. Herring, Appl. Opt. 40(6), 965–968 (2001).

    ADS  Article  Google Scholar 

  10. F.J. Förster, Laser-induced thermal acoustics: Simultaneous velocimetry and thermometry for the study of compressible flows. Ph.D. thesis, Institute of Aerospace Thermodynamics, University of Stuttgart (2016)

  11. S. Schlamp, H.G. Hornung, T.H. Sobota, E.B. Cummings, Appl. Opt. 39(30), 5477–5481 (2000).

    ADS  Article  Google Scholar 

  12. S. Schlamp, E.B. Cummings, H.G. Hornung, Appl. Opt. 38(27), 5724–5733 (1999).

    ADS  Article  Google Scholar 

  13. F.R. Menter, AIAA J. 32(8), 1598–1605 (1994).

    ADS  Article  Google Scholar 

  14. E.B. Cummings, I.A. Leyva, H.G. Hornung, Appl. Opt. 34(18), 3290–3302 (1995).

    ADS  Article  Google Scholar 

  15. T. Still, High frequency acoustics in colloid-based meso- and nanostructures by spontaneous Brillouin light scattering. Springer, Berlin (2010).

  16. A. Hell, F.J. Förster, B. Weigand, J. Raman Spectrosc. 47(9), 1157–1166 (2016).

    ADS  Article  Google Scholar 

  17. R.C. Hart, R.J. Balla, G.C. Herring, Appl. Opt. 38(3), 577–584 (1999).

    ADS  Article  Google Scholar 

  18. K. Bauer, J. Straub, U. Grigull, Int. J. Heat Mass Transfer 23(12), 1635–1642 (1980).

    Article  Google Scholar 

  19. V. Ramjee, A.K.M.F. Hussain, J. Fluids Eng. 98(3), 506–515 (1976).

    Article  Google Scholar 

  20. P.R. Spalart, C.L. Rumsey, AIAA J. 45(10), 2544–2553 (2007).

    ADS  Article  Google Scholar 

  21. P.G. Tucker, Advanced Computational Fluid and Aerodynamics (Cambridge University Press, Cambridge, 2016).

  22. J. Kim, P. Moin, R. Moser, J. Fluid Mech. 177, 133–166 (1987).

    ADS  Article  Google Scholar 

  23. S. Schlamp, T. Rösgen, D.N. Kozlov, C. Rakut, P. Kasal, J. von Wolfersdorf, J. Propuls. Power 21(6), 1008–1018 (2005).

    Article  Google Scholar 

  24. P. Danehy, Population- and thermal-grating contributions to degenerate four-wave mixing. Ph.D. thesis, Department of Mechanical Engineering, Stanford University (1995)

Download references


The authors kindly acknowledge the financial support of this work by the German Research Foundation (Deutsche Forschungsgemeinschaft) through the Research Project “Experimental and Numerical Mixing Investigations in a Compressible Nozzle Flow” (WE 2549/31-1).

Author information

Authors and Affiliations


Corresponding author

Correspondence to J. Richter.



See Table 2.

Table 2 Dimensions (mm) of the Mach 1.7 nozzle with subsonic section

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Richter, J., Mayer, J. & Weigand, B. Accuracy of non-resonant laser-induced thermal acoustics (LITA) in a convergent–divergent nozzle flow. Appl. Phys. B 124, 19 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: