Skip to main content

Accuracy of non-resonant laser-induced thermal acoustics (LITA) in a convergent–divergent nozzle flow

Abstract

Non-resonant laser-induced thermal acoustics (LITA) was applied to measure Mach number, temperature and turbulence level along the centerline of a transonic nozzle flow. The accuracy of the measurement results was systematically studied regarding misalignment of the interrogation beam and frequency analysis of the LITA signals. 2D steady-state Reynolds-averaged Navier–Stokes (RANS) simulations were performed for reference. The simulations were conducted using ANSYS CFX 18 employing the shear-stress transport turbulence model. Post-processing of the LITA signals is performed by applying a discrete Fourier transformation (DFT) to determine the beat frequencies. It is shown that the systematical error of the DFT, which depends on the number of oscillations, signal chirp, and damping rate, is less than \(1.5\%\) for our experiments resulting in an average error of \(1.9\%\) for Mach number. Further, the maximum calibration error is investigated for a worst-case scenario involving maximum in situ readjustment of the interrogation beam within the limits of constructive interference. It is shown that the signal intensity becomes zero if the interrogation angle is altered by \(2\%\). This, together with the accuracy of frequency analysis, results in an error of about \(5.4\%\) for temperature throughout the nozzle. Comparison with numerical results shows good agreement within the error bars.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. F.J. Förster, S. Baab, G. Lamanna, B. Weigand, Appl. Phys. B 121(3), 235–248 (2015). https://doi.org/10.1007/s00340-015-6217-7

    ADS  Article  Google Scholar 

  2. E.B. Cummings, Laser-induced thermal acoustics. Ph.D. thesis, California Institute of Technology (1995)

  3. S. Schlamp, E.B. Cummings, T.H. Sobota, Opt. Lett. 25(4), 224–226 (2000). https://doi.org/10.1364/OL.25.000224

    ADS  Article  Google Scholar 

  4. A. Stampanoni-Panariello, D.N. Kozlov, P.P. Radi, B. Hemmerling, Appl. Phys. B 81(1), 101–111 (2005). https://doi.org/10.1007/s00340-005-1852-z

    ADS  Article  Google Scholar 

  5. N.C. Dröske, F.J. Förster, B. Weigand, J. von Wolfersdorf, Acta Astronaut. 132, 177–191 (2017). https://doi.org/10.1016/j.actaastro.2016.12.023

    ADS  Article  Google Scholar 

  6. S. Baab, F.J. Förster, G. Lamanna, B. Weigand, Exp. Fluids 57(11), 172 (2016). https://doi.org/10.1007/s00348-016-2252-3

    Article  Google Scholar 

  7. D.N. Kozlov, Appl. Phys. B 80(3), 377–387 (2005). https://doi.org/10.1007/s00340-004-1720-2

    ADS  Article  Google Scholar 

  8. M. Neracher, W. Hubschmid, Appl. Phys. B 79(6), 783–791 (2004). https://doi.org/10.1007/s00340-004-1632-1

    ADS  Article  Google Scholar 

  9. R.C. Hart, R.J. Balla, G.C. Herring, Appl. Opt. 40(6), 965–968 (2001). https://doi.org/10.1364/AO.40.000965

    ADS  Article  Google Scholar 

  10. F.J. Förster, Laser-induced thermal acoustics: Simultaneous velocimetry and thermometry for the study of compressible flows. Ph.D. thesis, Institute of Aerospace Thermodynamics, University of Stuttgart (2016)

  11. S. Schlamp, H.G. Hornung, T.H. Sobota, E.B. Cummings, Appl. Opt. 39(30), 5477–5481 (2000). https://doi.org/10.1364/AO.39.005477

    ADS  Article  Google Scholar 

  12. S. Schlamp, E.B. Cummings, H.G. Hornung, Appl. Opt. 38(27), 5724–5733 (1999). https://doi.org/10.1364/AO.38.005724

    ADS  Article  Google Scholar 

  13. F.R. Menter, AIAA J. 32(8), 1598–1605 (1994). https://doi.org/10.2514/3.12149

    ADS  Article  Google Scholar 

  14. E.B. Cummings, I.A. Leyva, H.G. Hornung, Appl. Opt. 34(18), 3290–3302 (1995). https://doi.org/10.1364/AO.34.003290

    ADS  Article  Google Scholar 

  15. T. Still, High frequency acoustics in colloid-based meso- and nanostructures by spontaneous Brillouin light scattering. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-13483-8

  16. A. Hell, F.J. Förster, B. Weigand, J. Raman Spectrosc. 47(9), 1157–1166 (2016). https://doi.org/10.1002/jrs.4859

    ADS  Article  Google Scholar 

  17. R.C. Hart, R.J. Balla, G.C. Herring, Appl. Opt. 38(3), 577–584 (1999). https://doi.org/10.1364/AO.38.000577

    ADS  Article  Google Scholar 

  18. K. Bauer, J. Straub, U. Grigull, Int. J. Heat Mass Transfer 23(12), 1635–1642 (1980). https://doi.org/10.1016/0017-9310(80)90222-7

    Article  Google Scholar 

  19. V. Ramjee, A.K.M.F. Hussain, J. Fluids Eng. 98(3), 506–515 (1976). https://doi.org/10.1115/1.3448386

    Article  Google Scholar 

  20. P.R. Spalart, C.L. Rumsey, AIAA J. 45(10), 2544–2553 (2007). https://doi.org/10.2514/1.29373

    ADS  Article  Google Scholar 

  21. P.G. Tucker, Advanced Computational Fluid and Aerodynamics (Cambridge University Press, Cambridge, 2016). https://doi.org/10.1017/CBO9781139872010.

  22. J. Kim, P. Moin, R. Moser, J. Fluid Mech. 177, 133–166 (1987). https://doi.org/10.1017/S0022112087000892

    ADS  Article  Google Scholar 

  23. S. Schlamp, T. Rösgen, D.N. Kozlov, C. Rakut, P. Kasal, J. von Wolfersdorf, J. Propuls. Power 21(6), 1008–1018 (2005). https://doi.org/10.2514/1.13794

    Article  Google Scholar 

  24. P. Danehy, Population- and thermal-grating contributions to degenerate four-wave mixing. Ph.D. thesis, Department of Mechanical Engineering, Stanford University (1995)

Download references

Acknowledgements

The authors kindly acknowledge the financial support of this work by the German Research Foundation (Deutsche Forschungsgemeinschaft) through the Research Project “Experimental and Numerical Mixing Investigations in a Compressible Nozzle Flow” (WE 2549/31-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Richter.

Appendix

Appendix

See Table 2.

Table 2 Dimensions (mm) of the Mach 1.7 nozzle with subsonic section

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Richter, J., Mayer, J. & Weigand, B. Accuracy of non-resonant laser-induced thermal acoustics (LITA) in a convergent–divergent nozzle flow. Appl. Phys. B 124, 19 (2018). https://doi.org/10.1007/s00340-017-6885-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6885-6