Skip to main content
Log in

Two-dimensional electroacoustic waves in silicene

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this letter, we investigate the propagation of two-dimensional electromagnetic waves in a piezoelectric medium built upon silicene. Ultrashort optical pulses of Gaussian form are considered to probe this medium. On the basis of Maxwell’s equations supplemented with the wave equation for the medium’s displacement vector, we obtain the effective governing equation for the vector potential associated with the electromagnetic field, as well as the component of the displacement vector. The dependence of the pulse shape on the bandgap in silicene and the piezoelectric coefficient of the medium was analyzed, thereby revealing a nontrivial triadic interplay between the characteristics of the pulse dynamics, the electronic properties of silicene, and the electrically induced mechanical vibrations of the medium. In particular, we uncovered the possibility for an amplification of the pulse amplitude through the tuning of the piezoelectric coefficient. This property could potentially offer promising prospects for the development of amplification devices for the optoelectronics industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.A. Akhmanov, V.A. Vysloukhy, A.S. Chirikin, Optics of femtosecond laser pulses (AIP, New York, 1992)

    Google Scholar 

  2. D.K. Campbell, S. Flach, Y.S. Kivshar, Phys. Today 43, 57 (2004)

    Google Scholar 

  3. H. Leblond, D. Kremer, D. Mihalache, Phys. Rev. A 053812, 80 (2009)

    Google Scholar 

  4. A.V. Savin, Y.S. Kivshar, Europhys. Lett. 66002, 82 (2008)

    Google Scholar 

  5. H. Leblond, D. Mihalache, Phys. Rev. A 86, 043832 (2012)

    Article  ADS  Google Scholar 

  6. A.V. Zhukov, R. Bouffanais, N.N. Konobeeva, M.B. Belonenko, Phys. Lett. A 380, 3117 (2016)

    Article  ADS  Google Scholar 

  7. N.N. Konobeeva, M.B. Belonenko, Tech. Phys. Lett. 39, 579 (2013)

    Article  ADS  Google Scholar 

  8. D. Mihalache, Rom. J. Phys. 57, 352 (2012)

    Google Scholar 

  9. H. Leblond, D. Mihalache, Phys. Rep. 523, 61 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  10. A.V. Zhukov, R. Bouffanais, E.G. Fedorov, M.B. Belonenko, J. Appl. Phys. 114, 143106 (2013)

    Article  ADS  Google Scholar 

  11. D. Mihalache, Rom. J. Phys. 59, 295 (2014)

    Google Scholar 

  12. A.V. Zhukov, R. Bouffanais, E.G. Fedorov, M.B. Belonenko, J. Appl. Phys. 115, 203109 (2014)

    Article  ADS  Google Scholar 

  13. A.V. Zhukov, R. Bouffanais, H. Leblond, D. Mihalache, E.G. Fedorov, M.B. Belonenko, Eur. Phys. J. D 69, 242 (2015)

    Article  ADS  Google Scholar 

  14. A.V. Zhukov, R. Bouffanais, B.A. Malomed, H. Leblond, D. Mihalache, E.G. Fedorov, N.N. Rosanov, M.B. Belonenko, Phys. Rev A 94, 053823 (2016)

    Article  ADS  Google Scholar 

  15. N.N. Yanyushkina, M.B. Belonenko, N.G. Lebedev, A.V. Zhukov, M. Paliy, Int. J. Mod. Phys. B 25, 3401 (2011)

    Article  ADS  Google Scholar 

  16. N.N. Yanyushkina, M.B. Belonenko, Tech. Phys. 58, 621 (2013)

    Article  Google Scholar 

  17. S. Cahangirov, M. Topsakal, E. Aktrk, H. ?ahin, S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009)

  18. B. Aufray, A. Kara, H. Oughaddou, C. Léandri, B. Ealet, G. Lay, Appl. Phys. Lett. 96, 183102 (2010)

    Article  ADS  Google Scholar 

  19. P. Padova, C. Quaresima, C. Ottaviani, P. Sheverdyaeva, P. Moras, C. Carbone, D. Topwal, B. Olivieri, A. Kara, H. Oughaddou, B. Aufray, G. Lay, Appl. Phys. Lett. 96, 261905 (2010)

    Article  ADS  Google Scholar 

  20. P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. Carmen Asensio, A. Resta, B. Ealet, G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012)

    Article  ADS  Google Scholar 

  21. A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, Y. Yamada-Takamura, Phys. Rev. Lett. 108, 245501 (2012)

  22. M. Noor-A-Alam, H.J. Kim, Y.-H. Shin, J. Appl. Phys. 117, 224304 (2015)

    Article  ADS  Google Scholar 

  23. M. Ezawa, New J. Phys. 14, 033003 (2012)

    Article  ADS  Google Scholar 

  24. A.V. Zhukov, R. Bouffanais, N.N. Konobeeva, M.B. Belonenko, J. Appl. Phys. 120, 134307 (2016)

    Article  ADS  Google Scholar 

  25. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, 4th edn. (Butterworth-Heinemann, Oxford, 2000)

    MATH  Google Scholar 

  26. L.D. Landau, E.M. Lifshitz, Theory of Elasticity, 3rd edn. (Butterworth-Heinemann, Oxford, 1986)

    MATH  Google Scholar 

  27. W. Känzig, Ferroelectrics and antiferroelectrics (Academic Press, New York, 1964)

    Google Scholar 

  28. J.W. Thomas, Numerical Partial Differential Equations—Finite Difference Methods (Springer, New York, 1995)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

A. V. Zhukov and R. Bouffanais are financially supported by the SUTD-MIT International Design Centre (IDC). Numerical modeling was carried out in the framework of the state assignment of the Ministry of Education and Science (project no. 2.852.2017/PCh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Zhukov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, A.V., Bouffanais, R., Konobeeva, N.N. et al. Two-dimensional electroacoustic waves in silicene. Appl. Phys. B 124, 10 (2018). https://doi.org/10.1007/s00340-017-6879-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6879-4

Navigation