Skip to main content

Detection of shock-heated hydrogen peroxide (H2O2) by off-axis cavity-enhanced absorption spectroscopy (OA-CEAS)


Cavity-enhanced absorption spectroscopy (CEAS) is a promising technique for studying chemical reactions due to its desirable characteristics of high sensitivity and fast time-response by virtue of the increased path length and relatively short photon residence time inside the cavity. Off-axis CEAS (OA-CEAS) is particularly suited for the shock tube applications as it is insensitive to slight misalignments, and cavity noise is suppressed due to non-overlapping multiple reflections of the probe beam inside the cavity. Here, OA-CEAS is demonstrated in the mid-IR region at 1310.068 cm−1 to monitor trace concentrations of hydrogen peroxide (H2O2). This particular probe frequency was chosen to minimize interference from other species prevalent in combustion systems and in the atmosphere. The noise-equivalent detection limit is found to be 3.25 × 10−5 cm−1, and the gain factor of the cavity is 131. This corresponds to a detection limit of 74 ppm of H2O2 at typical high-temperature combustion conditions (1200 K and 1 atm) and 12 ppm of H2O2 at ambient conditions (296 K and 1 atm). To our knowledge, this is the first successful application of the OA-CEAS technique to detect H2O2 which is vital species in combustion and atmospheric science.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    B. P. Global, B. P. Worldwide, BP Energy Outlook 2035 (2015)

  2. 2.

    N. Kurimoto, B. Brumfield, X. Yang, T. Wada, P. Diévart, G. Wysocki, Y. Ju, Proc. Combust. Inst. 35, 457–464 (2014)

    Article  Google Scholar 

  3. 3.

    H. Sakugawa, I.R. Kaplan, W. Tsai, Y. Cohen, Environ. Sci. Technol. 24, 1452 (1990)

    ADS  Article  Google Scholar 

  4. 4.

    M.B. Sajid, E. Es-sebbar, T. Javed, C. Fittschen, A. Farooq, Int. J. Chem. Kinet. 46, 275 (2014)

    Article  Google Scholar 

  5. 5.

    K. Sun, S. Wang, R. Sur, X. Chao, J.B. Jeffries, R.K. Hanson, Opt. Express 22, 9291 (2014)

    ADS  Article  Google Scholar 

  6. 6.

    A.B.S. Alquaity, E. Es-sebbar, A. Farooq, Opt. Express 23, 7217 (2015)

    ADS  Article  Google Scholar 

  7. 7.

    K. Sun, S. Wang, R. Sur, X. Chao, J.B. Jeffries, R.K. Hanson, Opt. Express 22, 24559 (2014)

    ADS  Article  Google Scholar 

  8. 8.

    M. Nations, S. Wang, C.S. Goldenstein, K. Sun, D.F. Davidson, J.F. Jeffries, R.K. Hanson, Appl. Opt. 54, 8766 (2015)

    ADS  Article  Google Scholar 

  9. 9.

    S. Wang, K. Sun, D.F. Davidson, J.B. Jeffries, R.K. Hanson, Opt. Express 24, 308 (2016)

    ADS  Article  Google Scholar 

  10. 10.

    S. Wang, D.F. Davidson, J.B. Jeffries, R.K. Hanson, Proc. Combust. Inst. 36, 4549 (2017)

    Article  Google Scholar 

  11. 11.

    D.S. Sayres, E.J. Moyer, T.F. Hanisco, J.M. St, F.N. Clair, A. Keutsch, N.T. O’Brien, L. Allen, J.N. Lapson, J.N. Demusz, M. Rivero, Rev. Sci. Instrum. 80, 44102 (2009)

    Article  Google Scholar 

  12. 12.

    J.H. Van Helden, R. Peverall, G.A.D. Ritchie, Cavity Enhanced Techniques Using Continuous Wave Lasers (Wiley-Blackwell, Oxford, 2009)

    Book  Google Scholar 

  13. 13.

    B.E.A. Saleh, M.C. Teich, B.E. Saleh, Fundamentals of Photonics (Wiley, New York, 1991)

    Book  Google Scholar 

  14. 14.

    L. Tombez, S. Schilt, G. Di Domenico, S. Blaser, A. Muller, T. Gresch, B. Hinkov, M. Beck, J. Faist, D. Hofstetter, in CLEO Sci. Innov. (Optical Society of America, 2013), p. CM1 K-3

  15. 15.

    G.S. Engel, W.S. Drisdell, F.N. Keutsch, E.J. Moyer, J.G. Anderson, Appl. Opt. 45, 9221 (2006)

    ADS  Article  Google Scholar 

  16. 16.

    J. B. Paul, J. J. Scherer, A. O’Keefe, L. Lapson, J. R. Anderson, C. F. Gmachl, F. Capasso, and A. Y. Cho, in Environ. Ind. Sens. (International Society for Optics and Photonics, 2002), pp. 1–11

  17. 17.

    U. Kc, E.F. Nasir, A. Farooq, Appl. Phys. B 120, 223 (2015)

    ADS  Article  Google Scholar 

  18. 18.

    L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, J. Quant. Spectrosc. Radiat. Transf. 130, 4 (2013)

    ADS  Article  Google Scholar 

  19. 19.

    A.B.S. Alquaity, B.R. Giri, J.M.H. Lo, A. Farooq, J. Phys. Chem. A 119, 6594 (2015)

    Article  Google Scholar 

  20. 20.

    T. Javed, E.F. Nasir, E.T. Es-Sebbar, A. Farooq, Fuel 140, 201 (2015)

    Article  Google Scholar 

  21. 21.

    Z. Hong, A. Farooq, E.A. Barbour, D.F. Davidson, R.K. Hanson, J. Phys. Chem. A 113, 12919 (2009)

    Article  Google Scholar 

  22. 22.

    W. Ludwig, B. Brandt, G. Friedrichs, F. Temps, J. Phys. Chem. A 110, 3330 (2006)

    Article  Google Scholar 

  23. 23.

    L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, J. Quant. Spectrosc. Radiat. Transf. 111, 2139 (2010)

    ADS  Article  Google Scholar 

  24. 24.

    C. Kappel, K. Luther, J. Troe, Phys. Chem. Chem. Phys. 4, 4392 (2002)

    Article  Google Scholar 

Download references


Research reported in this publication was funded by King Abdullah University of Science and Technology (KAUST) via the Competitive Center Funding (CCF) program.

Author information



Corresponding author

Correspondence to Aamir Farooq.

Additional information

This article is part of the topical collection “Mid-infrared and THz Laser Sources and Applications” guest edited by Wei Ren, Paolo De Natale and Gerard Wysocki.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alquaity, A.B.S., KC, U., Popov, A. et al. Detection of shock-heated hydrogen peroxide (H2O2) by off-axis cavity-enhanced absorption spectroscopy (OA-CEAS). Appl. Phys. B 123, 280 (2017).

Download citation