Skip to main content
Log in

Double-sideband frequency scanning interferometry for long-distance dynamic absolute measurement

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Absolute distance measurements can be achieved by frequency scanning interferometry which uses a tunable laser. The main drawback of this method is that it is extremely sensitive to the movement of targets. In addition, since this method is limited to the linearity of frequency scanning, it is commonly used for close measurements within tens of meters. In order to solve these problems, a double-sideband frequency scanning interferometry system is presented in the paper. It generates two opposite frequency scanning signals through a fixed frequency laser and a Mach–Zehnder modulator. And the system distinguishes the two interference fringe patterns corresponding to the two signals by IQ demodulation (i.e., quadrature detection) of the echo. According to the principle of double-sideband modulation, the two signals have the same characteristics. Therefore, the error caused by the target movement can be effectively eliminated, which is similar to dual-laser frequency scanned interferometry. In addition, this method avoids the contradiction between laser frequency stability and swept performance. The system can be applied to measure the distance of the order of kilometers, which profits from the good linearity of frequency scanning. In the experiment, a precision about 3 μm was achieved for a kilometer-level distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.A. Stone, A. Stejskal, L. Howard, Appl. Opt. 38, 5981 (1999)

    Article  ADS  Google Scholar 

  2. P.A. Coe, D.F. Howell, R.B. Nickerson, Meas. Sci. Technol. 15, 2175 (2004)

    Article  ADS  Google Scholar 

  3. S. Kakuma, Y. Katase, Opt. Rev. 19, 376 (2012)

    Article  Google Scholar 

  4. P.A. Roos, R.R. Reibel, T. Berg, B. Kaylor, Z.W. Barber, W.R. Babbitt, Opt. Lett. 34, 3692 (2009)

    Article  ADS  Google Scholar 

  5. Y.C. Li, Y.Q. Wang, C.Y. Liu, J.R. Yang, Q. Ding, Appl. Phys. B 122, 1 (2016)

    ADS  Google Scholar 

  6. S.M. Beck, J.R. Buck, W.F. Buell, R.P. Dickinson, D.A. Kozlowski, N.J. Marechal, T.J. Wright, Appl. Opt. 44, 7621 (2005)

    Article  ADS  Google Scholar 

  7. R. Ulrich, R. Torge, Appl. Opt. 12, 2091 (1973)

    Article  Google Scholar 

  8. S. Nemoto, Appl. Opt. 31, 6690 (1992)

    Article  ADS  Google Scholar 

  9. S. N. Lea, H. S. Margolis, G. Huang, G. P. Barwood, H. A. Klein, P. J. Blythe et al., in The 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS), Glasgow, UK, 1014 November (2002), Vol 1 (IEEE, 2003)

  10. H.S. Margolis, G. Huang, S.N. Lea, G.P. Barwood, H.A. Klein, P. Gill et al., in 2004 Conference on Precision Electromagnetic Measurements, London, UK, 27 June2 July (2004), 18 (IEEE, 2004)

  11. F.R. Giorgetta, I. Coddington, J.R. Dahl, N. Greenfield, N.R. Newbury, P.A. Roos et al., Opt. Lett. 36, 1152 (2011)

    Article  ADS  Google Scholar 

  12. H.J. Yang, S. Nyberg, K. Riles, Appl. Opt. 44, 3937 (2004)

    Article  ADS  Google Scholar 

  13. H.J. Yang, S. Nyberg, K. Riles, Nucl. Instrum. Methods Phys. Res. Sect. A 575, 395 (2007)

    Article  ADS  Google Scholar 

  14. B.L. Swinkels, N. Bhattacharya, J.J.M. Braat, Opt. Lett. 30, 2242 (2005)

    Article  ADS  Google Scholar 

  15. J. Thiel, T. Pfeifer, M. Hartmann, Measurement 16, 1 (1995)

    Article  Google Scholar 

  16. A.F. Fox-Murphy, D.F. Howell, R.B. Nickerson, A.R. Weidberg, Nucl. Instrum. Methods Phys. Res. Sect. A 383, 229 (1996)

    Article  ADS  Google Scholar 

  17. J. Wang, J. Yu, W. Miao, B. Sun, S. Jia, W. Wang, Opt. Lett. 39, 4412 (2014)

    Article  ADS  Google Scholar 

  18. L. Tao, Z. Liu, W. Zhang, Y. Zhou, Opt. Lett. 39, 6997 (2014)

    Article  ADS  Google Scholar 

  19. Z. Liu, Z. Liu, Z. Deng, L. Tao, Appl. Opt. 55, 2985 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from Institute of Electronics Chinese Academy of Sciences (IECAS). And this work is partly supported by the National Natural Science Foundation of China (NSFC) (61575198).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Mo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, D., Wang, R., Li, Gz. et al. Double-sideband frequency scanning interferometry for long-distance dynamic absolute measurement. Appl. Phys. B 123, 272 (2017). https://doi.org/10.1007/s00340-017-6849-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6849-x

Navigation