Skip to main content
Log in

Design of mode conversion waveguides based on adiabatical mode evolution for mode division multiplexing

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Mode conversion based on adiabatical mode evolution in a two-core configuration is proposed. The mode conversion feature is only dependent on the relationship between the effective mode indexes of the two cores in the configuration, which shows the highly flexible characteristics of the configuration and large fabrication tolerance. A mode wide bandwidth multiplexer/demultiplexer which is achieved by cascading the configuration is demonstrated numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.J. Richardson, J.M. Fini, L.E. Nelson, Space-division multiplexing in optical fibres. Nat. Photonics 7(5), 354–362 (2013)

    Article  ADS  Google Scholar 

  2. G. Li et al., Space-division multiplexing: the next frontier in optical communication. Adv. Opt. Photonics 6(4), 5041–5046 (2014)

    Article  Google Scholar 

  3. G. Stepniak, L. Maksymiuk, J. Siuzdak, Binary-phase spatial light filters for mode-selective excitation of multimode fibers. J. Lightwave Technol. 29(13), 1980–1987 (2011)

    Article  ADS  Google Scholar 

  4. C. Koebele et al., Two mode transmission at 2 × 100 Gb/s, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer. Opt. Express 19(17), 16593 (2011)

    Article  ADS  Google Scholar 

  5. S. Randel et al., 6 × 56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6 × 6 MIMO equalization. ​Opt. Express 19(17), 16697–16707 (2011)

    Article  ADS  Google Scholar 

  6. R. Ryf et al., Low-Loss Mode Coupler for Mode-Multiplexed Transmission in Few-Mode Fiber. In Tical Fiber Communication Conference and Exposition (2012)

  7. H.-H.J. Von, R. Ryf, P. Winzer, LCoS-based mode shaper for few-mode fiber. Opt. Express 21(15), 18097–18110 (2013)

    Article  ADS  Google Scholar 

  8. J. Carpenter, T.D. Wilkinson, Characterization of multimode fiber by selective mode excitation. J. Lightwave Technol. 30(10), 1386–1392 (2012)

    Article  ADS  Google Scholar 

  9. J. Xing et al., Two-mode multiplexer and demultiplexer based on adiabatic couplers. Opt. Lett. 38(17), 3468–3470 (2013)

    Article  ADS  Google Scholar 

  10. F. Saitoh, K. Saitoh, M. Koshiba, A design method of a fiber-based mode multi/demultiplexer for mode-division multiplexing. Opt. Express 18(5), 4709–4716 (2010)

    Article  ADS  Google Scholar 

  11. N. Riesen, J.D. Love, J.W. Arkwright, Few-mode elliptical-core fiber data transmission. IEEE Photonics Technol. Lett. 24(5), 344–346 (2012)

    Article  ADS  Google Scholar 

  12. H. Kubota, T. Morioka, Few-mode optical fiber for mode-division multiplexing. Opt. Fiber Technol. 17(5), 490–494 (2011)

    Article  ADS  Google Scholar 

  13. J. Dong, K.S. Chiang, W. Jin, Compact three-dimensional polymer waveguide mode multiplexer. J. Lightwave Technol. 33(22), 4580–4588 (2015)

    Article  ADS  Google Scholar 

  14. J. Dong, K.S. Chiang, W. Jin, Mode multiplexer based on integrated horizontal and vertical polymer waveguide couplers. Opt. Lett. 40(13), 3125–3128 (2015)

    Article  ADS  Google Scholar 

  15. K. Aoki et al., Selective multimode excitation using volume holographic mode multiplexer. Opt. Lett. 38(5), 769–771 (2013)

    Article  ADS  Google Scholar 

  16. H. Bulow, Optical-mode demultiplexing by optical MIMO filtering of spatial samples. IEEE Photonics Technol. Lett. 24(12), 1045–1047 (2012)

    Article  ADS  Google Scholar 

  17. Y. Ding et al., Silicon photonic integrated circuit mode multiplexer. IEEE Photonics Technol. Lett. 25(7), 648–651 (2013)

    Article  ADS  Google Scholar 

  18. H. Qiu et al., Silicon mode multi/demultiplexer based on multimode grating-assisted couplers. Opt. Express 21(15), 17904 (2013)

    Article  ADS  Google Scholar 

  19. A.M.J. Koonen et al., Silicon photonic integrated mode multiplexer and demultiplexer. IEEE Photonics Technol. Lett. 24(21), 1961–1964 (2012)

    Article  ADS  Google Scholar 

  20. T.A. Birks et al., The photonic lantern. Adv. Opt. Photonics 7(2), 107–167 (2015)

    Article  Google Scholar 

  21. N. Riesen, J.D. Love, Tapered velocity mode-selective couplers. J. Lightwave Technol. 31(13), 2163–2169 (2013)

    Article  ADS  Google Scholar 

  22. K.Y. Song, B.Y. Kim, Broad-band LP 02 mode excitation using a fused-type mode-selective coupler. IEEE Photonics Technol. Lett. 15(12), 1734–1736 (2003)

    Article  ADS  Google Scholar 

  23. A. Witkowska et al., All-fiber LP11 mode convertors. Opt. Lett. 33(4), 306–308 (2008)

    Article  ADS  Google Scholar 

  24. C.P. Yu et al., Mode multiplexer for multimode transmission in multimode fibers. Opt. Express 19(13), 12673–12678 (2011)

    Article  ADS  Google Scholar 

  25. G. Lin, X. Dong, Design of broadband LP01↔LP02 mode converter based on special dual-core fiber for dispersion compensation. Appl. Opt. 51(19), 4388–4393 (2012)

    Article  ADS  Google Scholar 

  26. C.P. Tsekrekos, D. Syvridis, All-fiber broadband LP_{02} mode converter for future wavelength and mode division multiplexing systems. IEEE Photonics Technol. Lett. 24(24), 1638–1641 (2012)

    Article  ADS  Google Scholar 

  27. J. Dong, K.S. Chiang, Temperature-insensitive mode converters with CO2-laser written long-period fiber gratings. IEEE Photonics Technol. Lett. 27(9), 1006–1009 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  28. W. Jin, K.S. Chiang, Mode converters based on cascaded long-period waveguide gratings. Opt. Lett. 41(13), 3130 (2016)

    Article  ADS  Google Scholar 

  29. G. Labroille et al., Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion. Opt. Express 22(13), 15599–15607 (2014)

    Article  ADS  Google Scholar 

  30. W. Burns, A. Milton, Mode conversion in planar-dielectric separating waveguides. IEEE J. Quantum Electron. 11(1), 32–39 (1975)

    Article  ADS  Google Scholar 

  31. J.D. Love, N. Riesen, Single-, few-, and multimode Y-junctions. J. Lightwave Technol. 30(3), 304–309 (2012)

    Article  ADS  Google Scholar 

  32. N. Riesen, J.D. Love, Design of mode-sorting asymmetric Y-junctions. Appl. Opt. 51(15), 2778–2783 (2012)

    Article  ADS  Google Scholar 

  33. W. Chen, P. Wang, J. Yang, Mode multi/demultiplexer based on cascaded asymmetric Y-junctions. Opt. Express 21(21), 25113 (2013)

    Article  ADS  Google Scholar 

  34. J.B. Driscoll et al., Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Opt. Lett. 38(11), 1854–1856 (2013)

    Article  ADS  Google Scholar 

  35. W. Chen, P. Wang, J. Yang, Optical mode interleaver based on the asymmetric multimode Y junction. Photonics Technol. Lett. IEEE 26(20), 2043–2046 (2014)

    Article  ADS  Google Scholar 

  36. W.P. Huang, C.L. Xu, Simulation of three-dimensional optical waveguides by a full-vector beam propagation method. IEEE J. Quantum Electron. 29(10), 2639–2649 (1993)

    Article  ADS  Google Scholar 

  37. G.R. Hadley, Transparent boundary condition for the beam propagation method. IEEE J. Quantum Electron. 28(1), 363–370 (1992)

    Article  ADS  Google Scholar 

  38. R. Hl et al., Performance and modeling of advanced Ti: LiNbO3 digital optical switches. J. Lightwave Technol. 20(1), 92–99 (2002)

    Article  MathSciNet  Google Scholar 

  39. R.R. Thomson et al., Ultrafast laser inscription of a 121-waveguide fan-out for astrophotonics. Opt. Lett. 37(12), 2331–2333 (2012)

    Article  ADS  Google Scholar 

  40. C. Liao et al., Femtosecond laser inscribed long-period gratings in all-solid photonic bandgap fibers. IEEE Photonics Technol. Lett. 22(6), 425–427 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  41. A. Marcinkevičius et al., Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt. Lett. 26(5), 277–279 (2001)

    Article  ADS  Google Scholar 

  42. N. Riesen et al., Femtosecond direct-written integrated mode couplers. Opt. Express 22(24), 29855–29861 (2014)

    Article  ADS  Google Scholar 

  43. S. Gross et al., Three-dimensional ultra-broadband integrated tapered mode multiplexers. Laser Photonics Rev. 8(5), L81–L85 (2014)

    Article  Google Scholar 

  44. R.R. Thomson et al., Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications. Opt. Express 15(18), 11691–11697 (2007)

    Article  ADS  Google Scholar 

  45. J.R. Grenier, L.A. Fernandes, P.R. Herman, Femtosecond laser inscription of asymmetric directional couplers for in-fiber optical taps and fiber cladding photonics. Opt. Express 23(13), 16760–16771 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 51405200), and the China Post-Doctoral Science Foundation (no. 2015M580395).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Yang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, MY., Cao, GD., Yang, L. et al. Design of mode conversion waveguides based on adiabatical mode evolution for mode division multiplexing. Appl. Phys. B 123, 256 (2017). https://doi.org/10.1007/s00340-017-6833-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6833-5

Navigation