Applied Physics B

, 123:252 | Cite as

Nanostructured plasmas for enhanced gamma emission at relativistic laser interaction with solids

  • K. A. Ivanov
  • D. A. Gozhev
  • S. P. Rodichkina
  • S. V. Makarov
  • S. S. Makarov
  • M. A. Dubatkov
  • S. A. Pikuz
  • D. E. Presnov
  • A. A. Paskhalov
  • N. V. Eremin
  • A. V. Brantov
  • V. Yu. Bychenkov
  • R. V. Volkov
  • V. Yu. Timoshenko
  • S. I. Kudryashov
  • A. B. Savel’ev
Article
  • 248 Downloads

Abstract

The hot plasma formed onto the surface of nanostructured targets by a relativistically intense (up to 4 × 1018 W/cm2), high contrast femtosecond laser radiation is studied. The nanoscale structures (pores, spheres, grass) were produced via laser ablation or chemical etching of bulk silicon and molybdenum. We report one of the first experimentally observed manifold enhancements of gamma yield at the background of hot electron energy growth from 200 to >600 keV, compared to the case of initially flat substrate in the relativistic regime of interaction. The efficiency of hot particle production is significantly affected by the shape of the structures. Experimental results are supported by 2D3V Particle-In-Cell simulations of laser–plasma interaction. It is shown that a laser-based plasma source, formed onto the surface of a solid target may be utilized for phase contrast X-ray imaging in a wide energy range of photons.

Notes

Acknowledgements

The experiments on phase contrast imaging and PIC simulations of laser–plasma interaction were done under the support of RSF grant #17-12-01283. The targets fabrication and irradiation by high power laser was supported by RFBR grant # 15-02-08113-a, Program I.21Π of RAS Presidium and the Competitiveness Program of NRNU MEPhI. K.A. Ivanov acknowledges the Presidential program for postgraduates and young scientists (SP-2083.2016.4).

References

  1. 1.
    R. Toth, S. Fourmaux, T. Ozaki, M. Servol, J.C. Kieffer, R.E. Kincaid, A. Krol, Phys. Plasmas 14, 053506 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    S.V. Gasilov, A.Y. Faenov, T.A. Pikuz, I.Y. Skobelev, F. Calegari, C. Vozzi, M. Nisoli, G. Sansone, G. Valentini, S. De Silvestri, S. Stagira, JETP Lett. 87, 238 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    R.D. Edwards, M.A. Sinclair, T.J. Goldsack, K. Krushelnick, F.N. Beg, E.L. Clark, A.E. Dangor, Z. Najmudin, M. Tatarakis, B. Walton, M. Zepf, K.W.D. Ledingham, I. Spencer, P.A. Norreys, R.J. Clarke, R. Kodama, Y. Toyama, M. Tampo, Appl. Phys. Lett. 80, 2129 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    K.T. Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J.P. Goddet, R.C. Shah, S. Sebban, A. Rousse, Nat. Photonics 6, 308 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    H.-P. Schlenvoigt, K. Haupt, A. Debus, F. Budde, O. Jäckel, S. Pfotenhauer, H. Schwoerer, E. Rohwer, J.G. Gallacher, E. Brunetti, R.P. Shanks, S.M. Wiggins, D.A. Jaroszynski, Nat. Phys. 4, 130 (2007)CrossRefGoogle Scholar
  6. 6.
    K. Ledingham, I. Spencer, T. McCanny, R. Singhal, M. Santala, E. Clark, I. Watts, F. Beg, M. Zepf, K. Krushelnick, M. Tatarakis, A. Dangor, P. Norreys, R. Allott, D. Neely, R. Clark, A. Machacek, J. Wark, A. Cresswell, D. Sanderson, J. Magill, Phys. Rev. Lett. 84, 899 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    D. Umstadter, J. Phys. D Appl. Phys. 36, R151 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    A.V. Ovchinnikov, O.F. Kostenko, O.V. Chefonov, O.N. Rosmej, N.E. Andreev, M.B. Agranat, J.L. Duan, J. Liu, V.E. Fortov, Laser Part. Beams 29, 249 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    T. Nishikawa, H. Nakano, H. Ahn, N. Uesugi, T. Serikawa, Appl. Phys. Lett. 70, 1653 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    G. Kulcsar, D. AlMawlawi, F. Budnik, P. Herman, M. Moskovits, L. Zhao, R. Marjoribanks, Phys. Rev. Lett. 84, 5149 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    R.V. Volkov, V.M. Gordienko, M.S. Dzhidzhoev, B.V. Kamenev, P.K. Kashkarov, Y.V. Ponomarev, A.B. Savel’ev, V.Y. Timoshenko, A.A. Shashkov, Quantum Electron. 25, 192 (1998)Google Scholar
  12. 12.
    S.A. Gavrilov, D.M. Golishnikov, V.M. Gordienko, A.B. Savel’ev, R.V. Volkov, Laser Part. Beams 22, 301 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    S. Chaurasia, D.S. Munda, P. Ayyub, N. Kulkarni, N.K. Gupta, L.J. Dhareshwar, Laser Part. Beams 26, 473 (2008)CrossRefGoogle Scholar
  14. 14.
    S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A.D. Lad, V. Narayanan, P. Ayyub, G.R. Kumar, J. Zheng, Z.M. Sheng, Phys. Rev. B 83, 35408 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    U. Chakravarty, V. Arora, P.A. Naik, J.A. Chakera, H. Srivastava, A. Srivastava, G.D. Varma, S.R. Kumbhare, P.D. Gupta, J. Appl. Phys. 112, 053301 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    E.V. Golosov, A.A. Ionin, Y.R. Kolobov, S.I. Kudryashov, A.E. Ligachev, S.V. Makarov, Y.N. Novoselov, L.V. Seleznev, D.V. Sinitsyn, A.R. Sharipov, Phys. Rev. B 83, 115426 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    J. Fischer, M. Wegener, Laser Photonics Rev. 7, 22 (2013)CrossRefGoogle Scholar
  18. 18.
    V.A. Georgobiani, K.A. Gonchar, L.A. Osminkina, VYu. Timoshenko, Semiconductors 49, 1025 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    A.A. Ionin, S.I. Kudryashov, A.O. Levchenko, S.V. Makarov, I.N. Saraeva, A.A. Rudenko, A.V. Butsen, V.S. Burakov, JETP Lett. 106, 247 (2017). (in Russian, to be published in English soon) CrossRefGoogle Scholar
  20. 20.
    O. Klimo, J. Psikal, J. Limpouch, J. Proska, F. Novotny, T. Ceccotti, V. Floquet, S. Kawata, New J. Phys. 13, 053028 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    M.A. Purvis, V.N. Shlyaptsev, R. Hollinger, C. Bargsten, A. Pukhov, A. Prieto, Y. Wang, B.M. Luther, L. Yin, S. Wang, J.J. Rocca, Nat. Photonics 7, 796 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    A. Andreev, N. Kumar, K. Platonov, A. Pukhov, Phys. Plasmas 18, 103103 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    A. Andreev, K. Platonov, J. Braenzel, A. Lübcke, S. Das, H. Messaoudi, R. Grunwald, C. Gray, E. McGlynn, M. Schnürer, Plasma Phys. Control. Fusion 58, 14038 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    L.L. Ji, J. Snyder, A. Pukhov, R.R. Freeman, K.U. Akli, Sci. Rep. 6, 23256 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    S. Jiang, L.L. Ji, H. Audesirk, K.M. George, J. Snyder, A. Krygier, P. Poole, C. Willis, R. Daskalova, E. Chowdhury, N.S. Lewis, D.W. Schumacher, A. Pukhov, R.R. Freeman, K.U. Akli, Phys. Rev. Lett. 116, 085002 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    A.V. Brantov, VYu. Bychenkov, Contrib. Plasma Phys. 53, 731 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    A. Jullien, S. Kourtev, O. Albert, G. Chériaux, J. Etchepare, N. Minkovski, S.M. Saltiel, Appl. Phys. B 84, 409 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    B. Dromey, S. Kar, M. Zepf, P. Foster, Rev. Sci. Instrum. 75, 645 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    A. Sgattoni, L. Fedeli, G. Cantono, T. Ceccotti, A. Macchi, Plasma Phys. Control. Fusion 58, 14004 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    H. Habara, S. Honda, M. Katayama, H. Sakagami, K. Nagai, K.A. Tanaka, Phys. Plasmas 23, 63105 (2016)CrossRefGoogle Scholar
  31. 31.
    K.A. Ivanov, A.V. Brantov, S.I. Kudryashov, S.V. Makarov, D.A. Gozhev, R.V. Volkov, A.A. Ionin, VYu. Bychenkov, A.B. Savel’ev, Laser Phys. Lett. 12, 46005 (2015)CrossRefGoogle Scholar
  32. 32.
    K.A. Ivanov, S.A. Shulyapov, P.A. Ksenofontov, I.N. Tsymbalov, R.V. Volkov, A.B. Savel’ev, A.V. Brantov, VYu. Bychenkov, A.A. Turinge, A.M. Lapik, A.V. Rusakov, R.M. Djilkibaev, V.G. Nedorezov, Phys. Plasmas 21, 093110 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    G. Malka, J. Miquel, Phys. Rev. Lett. 77, 75 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    YuM Mikhailova, V.T. Platonenko, A.B. Savel’ev, Quantum Electron. 35, 38 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    P. Rajeev, P. Taneja, P. Ayyub, A. Sandhu, G. Kumar, Phys. Rev. Lett. 90, 115002 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    H.A. Sumeruk, S. Kneip, D.R. Symes, I.V. Churina, A.V. Belolipetski, G. Dyer, J. Landry, G. Bansal, A. Bernstein, T.D. Donnelly, A. Karmakar, A. Pukhov, T. Ditmire, Phys. Plasmas 14, 062704 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    P.P. Rajeev, S. Kahaly, S. Bagchi, S. Bose, P.P. Kiran, P. Ayyub, G.R. Kumar, J. Phys. IV 133, 533 (2006)Google Scholar
  38. 38.
    D.V. Romanov, VYu. Bychenkov, W. Rozmus, C.E. Capjack, R. Fedosejevs, Phys. Rev. Lett. 93, 215004 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    K.A. Ivanov, I.N. Tsymbalov, S.A. Shulyapov, D.A. Krestovskikhm, A.V. Brantov, VYu. Bychenkov, R.V. Volkov, A.B. Savel’ev, Phys. Plasmas 24, 063109 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    K.A. Ivanov, S.A. Shulyapov, A.A. Turinge, A.V. Brantov, D.S. Uryupina, R.V. Volkov, A.V. Rusakov, R.M. Djilkibaev, V.G. Nedorezov, VYu. Bychenkov, A.B. Savel’ev, Contrib. Plasma Phys. 53, 116 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    A. Ustione, A. Cricenti, F. Bonfigli, F. Floar, A. Lai, T. Marolom, R.M. Montereali, G. Baldacchini, A. Faenov, T. Pikuz, L. Reale, Appl. Phys. Lett. 88, 141107 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    T. Pikuz, A. Faenov, T. Matsuoka, S. Matsuyama, K. Yamauchi, N. Ozaki, B. Albertazzi, Y. Inubushi, M. Yabashi, K. Tono, Y. Sato, H. Yumoto, H. Ohashi, S. Pikuz, A.N. Grum-Grzhimailo, M. Nishikino, T. Kawachi, T. Ishikawa, R. Kodama, Sci. Rep. 5, 17713 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    G. Pretzler, Th Schlegel, E. Fill, D. Eder, Phys. Rev. E 62, 5618 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • K. A. Ivanov
    • 1
    • 2
  • D. A. Gozhev
    • 1
    • 2
  • S. P. Rodichkina
    • 1
  • S. V. Makarov
    • 3
  • S. S. Makarov
    • 1
    • 4
  • M. A. Dubatkov
    • 1
  • S. A. Pikuz
    • 4
    • 5
  • D. E. Presnov
    • 1
  • A. A. Paskhalov
    • 6
  • N. V. Eremin
    • 6
  • A. V. Brantov
    • 2
  • V. Yu. Bychenkov
    • 2
  • R. V. Volkov
    • 1
  • V. Yu. Timoshenko
    • 1
    • 2
    • 5
  • S. I. Kudryashov
    • 2
    • 5
  • A. B. Savel’ev
    • 1
  1. 1.Physics Faculty and International Laser Center of M.V. LomonosovMoscow State UniversityMoscowRussia
  2. 2.P.N. Lebedev Physical Institute of Russian Academy of SciencesMoscowRussia
  3. 3.ITMO UniversitySt. PetersburgRussia
  4. 4.Joint Institute for High Temperatures of Russian Academy of SciencesMoscowRussia
  5. 5.National Research Nuclear University MEPhIMoscowRussia
  6. 6.Skobeltsyn Institute of Nuclear Physics of M.V. Lomonosov, Moscow State UniversityMoscowRussia

Personalised recommendations