Skip to main content
Log in

Picosecond laser fabrication of nanostructures on ITO film surface assisted by pre-deposited Au film

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

With greater optical penetration depth and lower ablation threshold fluence, it is difficult to directly fabricate large scales of laser-induced periodic surface structures (LIPSSs) on indium–tin–oxide (ITO) films. This study proposed an approach to obtain optimized LIPSSs by sputtering an Au thin film on the ITO film surface. The concept behind the proposal is that the upper layer of the thin Au film can cause surface energy aggregation, inducing the initial ripple structures. The ripples deepened and become clear with lower energy due to optical trapping. The effective mechanism of Au film was analyzed and verified by a series of experiments. Linear sweep, parallel to the laser polarization direction, was performed using a Nd:VAN laser system with 10-ps Q-switched pulse, at a central wavelength of 532 nm, with a repetition rate of 1 kHz. The complete and clear features of the nanostructures, obtained with the periods of approximately 320 nm, were observed on ITO films with proper laser fluence and scanning speed. The depth of ripples was varying in the range of 15–65 nm with clear and coherent ITO films. The preferred efficiency of fabricating nanostructures and the excellent results were obtained at a scanning speed of 2.5 mm/s and a fluence of 0.189 J/cm2. In this way, the ablation and shedding of ITO films was successfully avoided. Thus, the proposed technique can be considered to be a promising method for the laser machining of special nonmetal films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.L. Feldheim, C. Foss, Behav. Brain Res. 14, 183–207 (2002)

    Google Scholar 

  2. P. Moriarty, Rep. Prog. Phys. 64, 297–381 (2001)

    Article  ADS  Google Scholar 

  3. C. Xu, L. Deng, A. Holder, L.R. Bailey, C. Leendertz, J. Bergmann, G. Proudfoot, O. Thomas, R. Gunn, M. Cooke, Phys. Status Solidi A 212, 171–176 (2014)

    Article  ADS  Google Scholar 

  4. A. Khosroabadi, P. Gangopadhyay, B. Duong, J. Thomas, A.K. Sigdel, J.J. Berry, T. Gennett, N. Peyghambarian, R.A. Norwood, Phys. Status Solidi 210, 831–838 (2013)

    Article  ADS  Google Scholar 

  5. J. Young, J. Preston, H. Van Driel, J. Sipe, Phys. Rev. B 27, 1141–1154 (1983)

    Article  ADS  Google Scholar 

  6. C.W. Chenga, I.M. Leeb, J.S. Chen, Appl. Surf. Sci. 316, 9–14 (2014)

    Article  ADS  Google Scholar 

  7. J. Bonse, A. Rosenfeld, J. Kruger, J. Appl. Phys. 106, 104910 (2009)

    Article  ADS  Google Scholar 

  8. F. Costache, S. Kouteva-Arguirova, J. Reif, Appl. Phys. A 79, 1429–1432 (2004)

    Article  ADS  Google Scholar 

  9. S. Sakabe, M. Hashida, S. Tokita, S. Namba, K. Okamuro, Phys. Rev. B 79, 033409 (2009)

    Article  ADS  Google Scholar 

  10. J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, J. Laser Appl. 24, 0420006–0420012 (2012)

    Article  Google Scholar 

  11. A Rosenfeld, M Rohloff, S Höhm, J Krüger, J Bonse, J. Appl. Phys. 110, 014910 (2011)

    Article  ADS  Google Scholar 

  12. K. Taweesup, I. Yamamoto, T. Chikyow, G. Lothongkum, K. Tsukagoshi, T. Ohishi, S. Tungasmita, P. Visuttipitukul, K. Ito, K. Tsukagoshi, T. Ohishi, S. Tungasmita, P. Visuttipitukul, K. Ito, M. Takahashi, T. Nabatame, Thin Solid Films. 598, 126–130 (2016)

    Article  ADS  Google Scholar 

  13. T.-L. Chang, Z.-C. Chen, Y.-C. Lee, Opt. Express 20, 168372 (2016)

    Google Scholar 

  14. R. Saha, W.D. Nix, Acta Mater. 50, 23–38 (2002)

    Article  Google Scholar 

  15. H. Kim, C.M. Gilmore, A. Piqué, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafafi, D.B. Chrisey, J. Appl. Phys. 88, 6021–6025 (2000)

    Article  ADS  Google Scholar 

  16. J.O. Park, J.H. Lee, J.J. Kim, S.H. Cho, Y.K. Cho, Thin Solid Films 474, 127–132 (2005)

    Article  ADS  Google Scholar 

  17. F. Ruffino, E. Carria, S. Kimiagar, I. Crupi, F. Simone, M.G. Grimaldi, Sci. Adv. Mater. 4, 708–718 (2012)

    Article  Google Scholar 

  18. N. Tagawa, M. Takada, A. Mori, H. Sawada, K. Kawahara, Tribol. Lett. 24, 143–149 (2006)

    Article  Google Scholar 

  19. J. Eichstädt, G.R.B.E. Römer, A.J. Huis int Veld, Phys. Proc. 12, 7–15 (2011)

    Article  Google Scholar 

  20. A.Y. Vorobyev, V.S. Makin, C. Guo, Phys. Rev. Lett. 102, 269401 (2009)

    Article  Google Scholar 

  21. L. Kotsedi, Z.Y. Nuru, P. Mthunzi, T.F.G. Muller, S.M. Eaton, B. Julies, E. Manikandan, R. Ramponi, M. Maaza, Appl. Surf. Sci. 321, 560–565 (2014)

    Article  ADS  Google Scholar 

  22. C. McDonnell, D. Milne, C. Prieto, H. Chan, D. Rostohar, G.M. O’Connor, Appl. Surf. Sci. 359, 567–575 (2015)

    Article  ADS  Google Scholar 

  23. S. Krause, P.T. Miclea, F. Steudel, S. Schweizer, G. Seifert, EPJ Photovolt. 4, 40601 (2013)

    Article  ADS  Google Scholar 

  24. H. Shin, B. Sim, M. Lee, Opt. Laser Eng. 48, 816–820 (2010)

    Article  Google Scholar 

  25. A. Rodríguez, M.C. Morant-Minana, A. Dias-Ponte, M. Martínez-Calderón, M. Gómez-Aranzadi, S.M. Olaizola, Surf. Sci. 351, 135–139 (2015)

    Article  Google Scholar 

  26. M. Straub, M. Afshar, D. Feili, H. Seidel, K. König, Phys. Proc. 12, 16–23 (2011)

    Article  ADS  Google Scholar 

  27. A. Ruiz de la Cruz, R. Lahoz, J. Siegel, G.F. de la Fuente, J. Solis, Opt. Lett. 39, 2491–2494 (2014)

    Article  ADS  Google Scholar 

  28. K. Zhang, J. Deng, Y. Xing, Y. Lian, G. Zhang, Surf. Eng. 31, 271–281 (2015)

    Article  Google Scholar 

  29. Q. Chen, M. Zhou, Z.M. Huang, J. Funct. Mater. 42, 158–160 (2011)

    Google Scholar 

  30. P. Feng, L. Jiang, X. Li, W. Rong, K. Zhang, Q. Cao, Appl. Opt. 54, 1314–1319 (2015)

    Article  ADS  Google Scholar 

  31. S.Z. Xiao, E.L. Gurevich, A. Ostendorf, Appl. Phys. A 107, 333–338 (2012)

    Article  ADS  Google Scholar 

  32. P.S. Banks, B.C. Stuart, M.A. Komashko, M.D. Feit, A.M. Rubenchik, M.D. Perry, Proc. SPIE 3934, 14–21 (2000)

    Article  ADS  Google Scholar 

  33. J.B. Lee, S.H. Lee, Mater. Trans. 52, 1492–1499 (2011)

    Article  Google Scholar 

  34. M. Huang, F.L. Zhao, Y. Cheng, N.S. Xu, Z.Z. Xu, ACS Nano 3, 4062–4070 (2009)

    Article  Google Scholar 

  35. T.T.D. Huynh, A. Petit, N. Semmar, Appl. Surf. Sci. 302, 109–113 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H.Z., Jiang, G.D., Wang, W.J. et al. Picosecond laser fabrication of nanostructures on ITO film surface assisted by pre-deposited Au film. Appl. Phys. B 123, 251 (2017). https://doi.org/10.1007/s00340-017-6822-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6822-8

Navigation