Advertisement

Applied Physics B

, 123:219 | Cite as

Measurement of ethylene in combustion exhaust using a 3.3-μm distributed feedback interband cascade laser with wavelength modulation spectroscopy

  • Kotaro Tanaka
  • Kazushi Akishima
  • Masahiro Sekita
  • Kenichi Tonokura
  • Mitsuru Konno
Article
  • 247 Downloads
Part of the following topical collections:
  1. Field Laser Applications in Industry and Research

Abstract

A sensor for the detection of ethylene (C2H4) in combustion exhaust based on a mid-infrared wavelength modulation spectroscopic technique was constructed using a distributed feedback interband cascade laser (DFB-ICL) with a wavelength of 3.3 μm. The direct absorption spectrum of C2H4 in the range of 2978.8–2982.1 cm−1 was recorded, where the spectrum was in good agreement with the spectrum simulated using parameters from the HITRAN 2012 database. The absorption line at 2979.581 cm−1 [2.42 × 10−21 cm2 mol−1 cm−1, ν11, PP5(5)] was selected for C2H4 detection. This frequency was chosen to minimize spectral interference from other major combustion products in the emission frequency range of the DFB-ICL. A limit of detection for C2H4 of 96 parts per billion by volume was achieved at a signal-to-noise ratio of two under 3 kPa of pressure using 2f wavelength modulation spectroscopy. Using the developed sensor, the ethylene concentration in the exhaust from a portable power generator was also successfully determined.

Notes

Acknowledgements

The authors thank an anonymous reviewer to inform C2H6 absorption spectra. This study was partly supported by JSPS KAKENHI (Grant Numbers 16K18023 and 26288086) and by the Council for Science, Technology, and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), “Innovative Combustion Technology” (Funding agency: JST).

References

  1. 1.
    D.A. Morgott, Chem. Biol. Interact. 241, 10 (2015)CrossRefGoogle Scholar
  2. 2.
    M.J. Pilling, Low-Temperature Combustion and Autoignition: Comprehensive Chemical Kinetics (Elsevier, Amsterdam, 1997)Google Scholar
  3. 3.
    C. Popa, M. Patachia, S. Banita, C. Matei, A. Bratu, D. Dumitras, Laser Phys. 23(10), 125701 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    S. Janssen, K. Shmitt, M. Blanke, M.L. Bauersfeld, J. Wollenstein, W. Lang, Math. Phys. Eng. Sci. 372(2017), 20130311 (2014)CrossRefGoogle Scholar
  5. 5.
    M.B. Sajid, T. Javed, A. Farooq, Comb. Flame 164, 1 (2016)CrossRefGoogle Scholar
  6. 6.
    C.G. Teodoro, D.U. Schramm, M.S. Sthel, G.R. Lima, M.V. Rocha, J.R. Tavares, H. Vargas, Infrared Phys. Technol. 53, 151 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    J.H. Seinfeld, Science 243(4892), 745 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    M.S. Aziz, A.J. Orr-Ewing, J. Environ. Monit. 14(12), 3094 (2012)CrossRefGoogle Scholar
  9. 9.
    E. Wahl, S. Tan, S. Koulikov, B. Kharlamov, C. Rella, E. Crosson, D. Biswell, B. Paldus, Opt. Express 14(4), 1673 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    M. Murtz, B. Frech, W. Urban, Appl. Phys. B 68(2), 243 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    G. Mothe, M. Castro, M. Sthel, G. Lima, L. Brasil, L. Campos, A. Rocha, H. Vargas, Sensors 10(11), 9726 (2010)CrossRefGoogle Scholar
  12. 12.
    F.J.M. Harren, R. Berkelmans, K. Kuiper, S. Hekkert, P. Scheepers, R. Dekhuijzen, P. Hollander, D.H. Parker, Appl. Phys. Lett. 74(12), 1761 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    L. Voesenek, M. Banga, J. Rijnders, E. Visser, F. Harren, R. Brailsford, M. Jackson, C. Bolm, Ann. Bot. 79, 57 (1997)CrossRefGoogle Scholar
  14. 14.
    J.A. de Gouw, S. te Lintel Hekkert, J. Mellqvist, C. Warneke, E.L. Atlas, F.C. Fehsenfeld, A. Fried, G.J. Frost, F.J. Harren, J.S. Holloway, B. Lefer, R. Lueb, J.F. Meagher, D.D. Parrish, M. Patel, L. Pope, D. Richter, C. Rivera, T.B. Ryerson, J. Samuelsson, J. Walega, R.A. Washenfelder, P. Weibring, X. Zhu, Environ. Sci. Technol. 43(7), 2437 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Y.Y. Leshem, Y. Pinchasov, J. Exp. Bot. 51(349), 1471 (2000)Google Scholar
  16. 16.
    Z. Wang, Z. Li, W. Ren, Opt. Express 24(4), 4143 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    W. Ren, D.F. Davidson, R.K. Hanson, Int. J. Chem. Kinet. 44(6), 423 (2012)CrossRefGoogle Scholar
  18. 18.
    D. Weidmann, A.A. Kosterev, C. Roller, R.F. Curl, M.P. Fraser, F.K. Tittel, Appl. Opt. 43(16), 3329 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    M.T. McCulloch, N. Langfold, G. Duxbury, Appl. Opt. 44(14), 2887 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    J. Manne, W. Jager, J. Tulip, Appl. Phys. B 94(2), 337 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    T. Nguyen Ba, M. Triki, G. Desbrosses, A. Vicet, Rev. Sci. Instrum. 86(2), 023111 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    K. Tanaka, K. Miyamura, K. Akishima, K. Tonokura, M. Konno, Infrared Phys. Technol. 79, 1 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    C. Li, L. Dong, C. Zheng, F.K. Tittel, Sens. Actuators B Chem. 232, 188 (2016)CrossRefGoogle Scholar
  24. 24.
    R.K. Hanson, D.F. Davidson, Prog. Energy Combust. Sci. 44, 103 (2014)CrossRefGoogle Scholar
  25. 25.
    L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.M. Flaud, R.R. Gamache, J.J. Harrison, J.M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S.N. Mikhailenko, H.S.P. Muller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.I.G. Tyuterev, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 130, 4 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    J.J. Harrison, N.D.C. Allen, P.F. Bernath, J. Quant. Spectrosc. Radiat. Transf. 111, 357 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    H. Klingenberg, Automobile Exhaust Emission Testing (Springer, Berlin, Heidelberg, 1996)CrossRefGoogle Scholar
  28. 28.
    K.F. Ho, S.S.H. Ho, S.C. Lee, P.K.K. Louie, J. Cao, W. Deng, Aerosol. Air Qual. Res. 13, 1331 (2013)Google Scholar
  29. 29.
    J.Y. Chin, S.A. Batterman, W.F. Northrop, S.V. Bohac, D.N. Assanis, Energy Fuels 26, 6737 (2012)Google Scholar
  30. 30.
    J. Reid, D. Labrie, Appl. Phys. B 26, 203 (1981)ADSCrossRefGoogle Scholar
  31. 31.
    P. Werle, R. Mucke, F. Slemr, Appl. Phys. B 57, 131 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Kotaro Tanaka
    • 1
  • Kazushi Akishima
    • 2
  • Masahiro Sekita
    • 2
  • Kenichi Tonokura
    • 3
  • Mitsuru Konno
    • 1
  1. 1.Department of Mechanical EngineeringIbaraki UniversityHitachiJapan
  2. 2.Graduate School of Science and EngineeringIbaraki UniversityHitachiJapan
  3. 3.Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan

Personalised recommendations