Skip to main content
Log in

Sub-wavelength resolution dynamics of semiconductor passively mode-locked lasers induced by optical feedback

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a numerical analysis that focuses, for the first time to our knowledge, on the feedback-induced dynamics in a semiconductor passively mode-locked laser with sub-wavelength resolution. Our results and the corresponding theoretical explanations elucidate several aspects of the laser dynamics under self-injection including inherent properties of mode-locked lasers such as pulse intensity noise and timing jitter. We show that the dynamics of the laser exhibit a periodicity in the wavelength scale apparent only on integer multiples of the laser cavity and decays in the time scale of the pulse duration following the coherence of the mode-locked laser. The corresponding phenomena are dominant for external cavities that are shorter than the laser cavity and superimposed on the previously reported dynamics of the semiconductor mode-locked lasers for longer external delays. Since these dynamics are triggered by low feedback levels, our study could be useful for the optimization of the laser operation in cases where ultra-short external cavity lengths are involved (integrated designs, power collection with fiber tapers, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Donati, M.T. Fathi, IEEE J. Quantum Electron. 48, 1352–1359 (2012)

    Article  ADS  Google Scholar 

  2. Junji Ohtsubo, Semiconductor lasers: stability, instability and chaos (optical sciences) (Springer, New York, 2006)

    MATH  Google Scholar 

  3. C.-Y. Lin, F. Grillot, Y. Li, R. Raghunathan, L.F. Lester, IEEE J. Sel. Top. Quantum Electron. 17, 1311–1317 (2011)

    Article  Google Scholar 

  4. L. Drzewietzki, S. Breuer, W. Elsäßer, Opt. Express 21, 16142–16161 (2013)

    Article  ADS  Google Scholar 

  5. G. Fiol, M. Kleinert, D. Arsenijević, D. Bimberg, Semicond. Sci. Technol. 26, 014006 (2011)

    Article  ADS  Google Scholar 

  6. C. Simos, H. Simos, C. Mesaritakis, A. Kapsalis, S. Syvridis, Opt. Commun. 313, 248–255 (2014)

    Article  ADS  Google Scholar 

  7. C. Otto, K. Ludge, A.G. Vladimirov, M. Wolfrum, E. Scholl, N. J. Phys. 14, 113033 (2012)

    Article  Google Scholar 

  8. O. Solgaard, K.Y. Lau, IEEE Photon. Technol. Lett. 5, 1264–1267 (1993)

    Article  ADS  Google Scholar 

  9. E.A. Avrutin, B.M. Russell, IEEE J. Quantum Electron. 45, 1456–1464 (2009)

    Article  ADS  Google Scholar 

  10. H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, IEEE J. Quantum Electron. 48, 872–877 (2012)

    Article  ADS  Google Scholar 

  11. T. Heil, I. Fischer, W. Elsäßer, A. Gavrielides, Phys. Rev. Lett. 87, 243901 (2001)

    Article  ADS  Google Scholar 

  12. O. Ushakov, S. Bauer, O. Brox, H.-J. Wünsche, F. Henneberger, Phys. Rev. Lett. 92, 043902 (2004)

    Article  ADS  Google Scholar 

  13. K. Merghem, C. Calo, V. Panapakkam, A. Martinez, F. Lelarge, A. Ramdane, IEEE J. Sel. Top. Quantum Electron. 21, 1101407 (2015)

    Article  Google Scholar 

  14. P. Spano, S. Piazzolla, M. Tamburini, IEEE J. Quantum Electron. 20, 350–357 (1984)

    Article  ADS  Google Scholar 

  15. J. Kitching, R. Boyd, A. Yariv, Y. Shevy, Opt. Lett. 19, 1331–1333 (1994)

    Article  ADS  Google Scholar 

  16. J. Kitching, A. Yariv, Y. Shevy, Phys. Rev. Lett. 74, 3372–3375 (1995)

    Article  ADS  Google Scholar 

  17. K. Vahala, A. Yariv, Appl. Phys. Lett. 45, 501–503 (1984)

    Article  ADS  Google Scholar 

  18. M.A. Newkirk, K.J. Vahala, IEEE J. Quantum Electron. 27, 13–22 (1991)

    Article  ADS  Google Scholar 

  19. D. Eliyahu, R.A. Salvatore, A. Yariv, J. Opt. Soc. Am. B 7, 1619 (1996)

    Article  ADS  Google Scholar 

  20. R. Paschotta, Appl. Phys. B 79, 163–173 (2004)

    Article  Google Scholar 

  21. H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, IEEE Photon. Technol. Lett. 27, 506–509 (2015)

    Article  ADS  Google Scholar 

  22. J. Mulet, J. Mørk, IEEE J. Quantum Electron. 42(3), 249 (2006)

    Article  ADS  Google Scholar 

  23. D. von der Linde, Appl. Phys. B 39, 201–217 (1986)

    Article  ADS  Google Scholar 

  24. H. Haus, A. Mecozzi, IEEE J. Quantum Electron. 29, 983–996 (1993)

    Article  ADS  Google Scholar 

  25. D. Eliyahu, R.A. Salvatore, A. Yariv, J. Opt. Soc. Am. B 14, 167 (1997)

    Article  ADS  Google Scholar 

  26. F. Kéfélian, Sh O’Donoghue, M.T. Todaro, J.G. McInerney, G. Huyet, IEEE Photonics Tech. Lett. 20, 16 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Simos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simos, C., Simos, H. & Syvridis, D. Sub-wavelength resolution dynamics of semiconductor passively mode-locked lasers induced by optical feedback. Appl. Phys. B 123, 222 (2017). https://doi.org/10.1007/s00340-017-6793-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6793-9

Navigation