Skip to main content
Log in

Self-orientation effect of liquid crystals on holographic polymer-dispersed liquid crystal and distributed feedback lasers

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The average orientation of a liquid crystal (LC) director to the grating formation, morphology, and switching properties of a holographic polymer-dispersed liquid crystal (HPDLC) grating was systematically investigated in this study. The grating possessed high diffraction efficiency and low scattering with the LC director being parallel to the grating vector. The scanning electron microscope confirmed the well-defined morphology with the LC director being parallel to the grating vector. The grating was easily switched when the LC director was perpendicular to the grating vector. Moreover, polarization excitation was performed to investigate the polarization dependence behavior of the HPDLC-distributed feedback (DFB) laser. The results confirmed that the HPDLC grating is suitable as a laser oscillation when the LC director is parallel to the grating vector. Finally, the tuning range was obtained for the HPDLC DFB laser by applying an external electric field. The tunability, ease of fabrication, and mass production make the HPDLC DFB lasers suitable as smart laser sources for spectroscopy and communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.J. Bunning, L.V. Natarajan, V.P. Tondiglia, R.L. Sutherland, Annu. Rev. Mater. Sci. 30, 83 (2000)

    Article  ADS  Google Scholar 

  2. Y.J. Liu, H.T. Dai, X.W. Sun, J. Mater. Chem. 21, 2982 (2011)

    Article  Google Scholar 

  3. L. Sio, L. Ricciardi, S. Serak, M. La Deda, N. Tabiryan, C. Umeton, J. Mater. Chem. 22, 6669 (2012)

    Article  Google Scholar 

  4. H.Y. Peng, M.L. Ni, S.G. Bi, Y.G. Liao, X.L. Xie, Rsc Adv. 4, 4420 (2014)

    Article  Google Scholar 

  5. R.L. Sutherland, V.P. Tondiglia, L.V. Natarajan, T.J. Bunning, W.W. Adams, Appl. Phys. Lett. 64, 1074 (1994)

    Article  ADS  Google Scholar 

  6. J. Qi, G.P. Crawford, Displays 25, 177 (2004)

    Article  Google Scholar 

  7. S. Yeralan, J. Gunther, D. Ritums, R. Cid, M. Popovich, Opt. Eng. 41, 1774 (2002)

    Article  ADS  Google Scholar 

  8. H.W. Ren, Y.H. Fan, S.T. Wu, Appl. Phys. Lett. 83, 1515 (2003)

    Article  ADS  Google Scholar 

  9. M.H. Liu, Y.G. Liu, G.Y. Zhang, Z.H. Peng, D.Y. Li, J. Ma, L. Xuan, J. Phys. D Appl. Phys. 49, 465102 (2016)

    Article  ADS  Google Scholar 

  10. M. Fasanella, E. Castriota, L.De Cazzanelli, R. Sio, C. Caputo, Umeton. Mol. Cryst. Liq. Cryst. 558, 46 (2012)

    Article  Google Scholar 

  11. R. Caputo, L. De Sio, A. Veltri, C. Umeton, Opt. Lett. 29, 1261 (2004)

    Article  ADS  Google Scholar 

  12. W. Huang, Y. Liu, Z. Diao, C. Yang, L. Yao, J. Ma, L. Xuan, Appl. Opt. 51, 4013 (2012)

    Article  ADS  Google Scholar 

  13. M. Drevensek-Olenik, M.A. Fally, Ellabban. Phys. Rev. E 74, 021707 (2006)

    Article  ADS  Google Scholar 

  14. K. Takeshi, T. Yoshinao, Jpn. J. Appl. Phys. 36, 6388 (1997)

    Article  Google Scholar 

  15. W. Huang, Z. Diao, Y. Liu, Z. Peng, C. Yang, J. Ma, L. Xuan, Org. Electron. 13, 2307 (2012)

    Article  Google Scholar 

  16. J. Cornil, D. Beljonne, J.P. Calbert, J.L. Bredas, Adv. Mater. 13, 1053 (2001)

    Article  Google Scholar 

  17. T. Manaka, M. Iwamoto, Light Sci. Appl. 5, e16040 (2016)

    Article  Google Scholar 

  18. C. Sánchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, R. Nussbaumer, Adv. Funct. Mater. 15, 1623 (2005)

    Article  Google Scholar 

  19. T.J. Bunning, L.V. Natarajan, V. Tondiglia, R.L. Sutherland, D.L. Vezie, W.W. Adams, Polymer 36, 2699 (1995)

    Article  Google Scholar 

  20. R.L. Sutherland, V.P. Tondiglia, L.V. Natarajan, T.J. Bunning, Appl. Phys. Lett. 79, 1420 (2001)

    Article  ADS  Google Scholar 

  21. R.L. Sutherland, V.P. Tondiglia, L.V. Natarajan, P.F. Lloyd, T.J. Bunning, J. Appl. Phys. 99, 123104 (2006)

    Article  ADS  Google Scholar 

  22. C.M. Leewis, A.M. de Jong, L.J. van Ijzendoorn, D.J. Broer, J. Appl. Phys. 95, 4125 (2004)

    Article  ADS  Google Scholar 

  23. E. Hata, Y. Tomita, Opt. Lett. 35, 396–398 (2010)

    Article  ADS  Google Scholar 

  24. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969)

    Article  Google Scholar 

  25. R. Jakubiak, T.J. Bunning, R.A. Vaia, L.V. Natarajan, V.P. Tondiglia, Adv. Mater. 15, 241 (2003)

    Article  Google Scholar 

  26. C. Vannahme, M. Dufva, A. Kristensen, Light Sci. Appl. 4, e269 (2015)

    Article  Google Scholar 

  27. S. Mhibik, D. Forget, G. Ott, I. Venus, L. Divliansky, S. Glebov, Chenais. Light Sci. Appl. 5, e16026 (2016)

    Article  Google Scholar 

  28. Y.R. Fang, M.T. Sun, Light Sci. Appl. 4, e294 (2015)

    Article  Google Scholar 

  29. A. Llobera, J. Juvert, A. Gonzalez-Fernandez, B. Ibarlucea, E. Carregal-Romero, S. Buttgenbach, C. Fernandez-Sanchez, Light Sci. Appl. 4, e271 (2015)

    Article  Google Scholar 

  30. H. Kogelnik, C.V. Shank, Appl. Phys. Lett. 18, 152 (1971)

    Article  ADS  Google Scholar 

  31. M.D. McGehee, R. Gupta, S. Veenstra, E.K. Miller, M.A. Diaz-Garcia, A.J. Heeger, Phys. Rev. B 58, 7035 (1998)

    Article  ADS  Google Scholar 

  32. J.H. Son, B. Cho, S. Hong, S.H. Lee, O. Hoxha, A.J. Haack, L.P. Lee, Light Sci. Appl. 4, e280 (2015)

    Article  Google Scholar 

  33. E.B. Namdas, M. Tong, P. Ledochowitsch, S.R. Mednick, J.D. Yuen, D. Moses, A.J. Heeger, Adv. Mater. 21, 799 (2009)

    Article  Google Scholar 

  34. S. Hermann, R.C. Shallcross, K. Meerholz, Adv. Mater. 26, 6019 (2014)

    Article  Google Scholar 

  35. Z. Diao, L. Kong, L. Xuan, J. Ma, Org. Electron. 27, 101 (2015)

    Article  Google Scholar 

  36. T. Woggon, S. Klinkhammer, U. Lemmer, Appl. Phys. B Lasers Opt. 99, 47 (2010)

    Article  ADS  Google Scholar 

  37. J. Clark, G. Lanzani, Nat. Photonics 4, 438 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61377032 and 61378075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Xuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Liu, Y., Peng, Z. et al. Self-orientation effect of liquid crystals on holographic polymer-dispersed liquid crystal and distributed feedback lasers. Appl. Phys. B 123, 208 (2017). https://doi.org/10.1007/s00340-017-6786-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6786-8

Navigation