Skip to main content
Log in

Role of target thickness in proton acceleration from near-critical mass-limited plasmas

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The role played by the target thickness in generating high energetic protons by a circularly polarized laser from near-critical mass-limited targets (MLT) has been investigated with the help of three-dimensional (3D) particle-in-cell (PIC) simulations. The radiation pressure accelerates protons from the front side of the target. Due to hole boring, the target front side gets deformed resulting in a change in the effective angle of incidence which causes vacuum heating and hence generates hot electrons. These hot electrons travel through the target at an angle with the laser axis and hence get more diverged along transverse directions for large target thickness. The hot electrons form sheath fields on the target rear side which accelerates protons via target normal sheath acceleration (TNSA). It is observed that the collimation of radiation pressure accelerated protons gets degraded on reaching the target rear side due to TNSA. The effect of transverse hot electron recirculations gets suppressed and the energetic protons get highly collimated on decreasing target thickness as the radiation pressure acceleration (RPA) starts dominating the acceleration process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Roth, T.E. Cowan, M.H. Key, S.P. Hatchett, C. Brown, W. Fountain, J. Johnson, D.M. Pennington, R.A. Snavely, S.C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S.V. Bulanov, E.M. Campbell, M.D. Perry, H. Powell, Phys. Rev. Lett. 86, 436 (2001)

    Article  ADS  Google Scholar 

  2. N.S.P. King et al., Nucl. Instrum. Methods Phys. Res. Sect. A 424, 84 (1999)

    Article  ADS  Google Scholar 

  3. M. Borghesi, A. Schiavi, D.H. Campbell, M.G. Haines, O. Willi, A.J. Mackinnon, P. Patel, M. Galimberti, L.A. Gizzi, Rev. Sci. Instrum. 74, 1688 (2003)

    Article  ADS  Google Scholar 

  4. V.Y. Bichenkov, V.T. Tikhonchuk, S.V. Tolonnikov, JETP 88, 1137 (1999)

    Article  ADS  Google Scholar 

  5. V.S. Khoroshkov, E.I. Minakova, Eur. J. Phys. 19, 523 (1998)

    Article  Google Scholar 

  6. S.V. Bulanov, T.Z. Esirkepov, V.S. Khoroshkov, A.V. Kuznetsov, F. Pegoraro, Phys. Lett. A 299, 240 (2002)

    Article  ADS  Google Scholar 

  7. B.A. Remington, R.P. Drake, H. Takabe, Phys. Plasmas 7, 1641 (2000)

    Article  ADS  Google Scholar 

  8. E.L. Clark, K. Krushelnick, J.R. Davies, M. Zepf, M. Tatarakis, F.N. Beg, A. Machacek, P.A. Norreys, M.I.K. Santala, I. Watts, A.E. Dangor, Phys. Rev. Lett. 84, 670 (2000)

    Article  ADS  Google Scholar 

  9. A. Maksimchuk, S. Gu, K. Flippo, D. Umstadter, V.Y. Bychenkov, Phys. Rev. Lett. 84, 4108 (2000)

    Article  ADS  Google Scholar 

  10. R.A. Snavely, M.H. Key, S.P. Hatchett, T.E. Cowan, M. Roth, T.W. Phillips, M.A. Stoyer, E.A. Henry, T.C. Sangster, M.S. Singh, S.C. Wilks, A. MacKinnon, A. Offenberger, D.M. Pennington, K. Yasuike, A.B. Langdon, B.F. Lasinski, J. Johnson, M.D. Perry, E.M. Campbell, Phys. Rev. Lett. 85, 2945 (2000)

    Article  ADS  Google Scholar 

  11. S.C. Wilks, A.B. Langdon, T.E. Cowan, M. Roth, M. Singh, S. Hatchett, M.H. Key, D. Pennington, A. MacKinnon, R.A. Snavely, Phys. Plasmas 8, 542 (2001)

    Article  ADS  Google Scholar 

  12. T. Esirkepov, M. Borghesi, S.V. Bulanov, G. Mourou, T. Tajima, Phys. Rev. Lett. 92, 175003 (2004)

    Article  ADS  Google Scholar 

  13. A. Henig, S. Steinke, M. Schnrer, T. Sokollik, R. Hrlein, D. Kiefer, D. Jung, J. Schreiber, B.M. Hegelich, X.Q. Yan, J. Meyer-ter-Vehn, T. Tajima, P.V. Nickles, W. Sandner, D. Habs, Phys. Rev. Lett. 103, 245003 (2009)

    Article  ADS  Google Scholar 

  14. T. Schlegel, N. Naumova, V.T. Tikhonchuk, C. Labaune, I.V. Sokolov, G. Mourou, Phys. Plasmas 16, 083103 (2009)

    Article  ADS  Google Scholar 

  15. N. Naumova, T. Schlegel, V.T. Tikhonchuk, C. Labaune, I.V. Sokolov, G. Mourou, Phys. Rev. Lett. 102, 025002 (2009)

    Article  ADS  Google Scholar 

  16. B. Qiao, M. Zepf, M. Borghesi, M. Geissler, Phys. Rev. Lett. 102, 145002 (2009)

    Article  ADS  Google Scholar 

  17. D. Neely, P. Foster, A. Robinson, F. Lindau, O. Lundh, A. Persson, C.-G. Wahlstrom, P. McKenna et al., Appl. Phys. Lett. 89, 021502 (2006)

    Article  ADS  Google Scholar 

  18. A.J. Mackinnon, Y. Sentoku, P.K. Patel, D.W. Price, S. Hatchett, M.H. Key, C. Andersen, R. Snavely, R.R. Freeman, Phys. Rev. Lett. 88, 215006 (2002)

    Article  ADS  Google Scholar 

  19. J. Psikal, J. Limpouch, S. Kawata, A.A. Andreev, Czech. J. Phys. 56, B515 (2006)

    Article  Google Scholar 

  20. J. Limpouch, J. Psikal, A.A. Andreev, K.Y. Platonov, S. Kawata, Laser. Part. Beams. 26, 225 (2008)

    Article  Google Scholar 

  21. T. Sokollik, M. Schnurer, S. Steinke, P.V. Nickles, W. Sandner, M. Amin, T. Toncian, O. Willi, A.A. Andreev, Phys. Rev. Lett. 103, 135003 (2009)

    Article  ADS  Google Scholar 

  22. T. Sokollik, T. Paasch-Colberg, K. Gorling, U. Eichmann, M. Schnurer, S. Steinke, P.V. Nickles, A. Andreev, W. Sandner, New J. Phys. 12, 113013 (2010)

    Article  ADS  Google Scholar 

  23. T. Kluge, W. Enghardt, S.D. Kraft, U. Schramm, K. Zeil, T.E. Cowan, M. Bussmann, Phys. Plasmas 17, 123103 (2010)

    Article  ADS  Google Scholar 

  24. A.A. Andreev, J. Limpouch, J. Psikal, K.Y. Platonov, V.T. Tikhonchuk, Eur. Phys. J. Special Top. 175, 123 (2009)

    Article  ADS  Google Scholar 

  25. S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, K.M. Shimada, A. Sunahara, H. Furukawa, App. Phys. Lett. 87, 241503 (2005)

    Article  ADS  Google Scholar 

  26. A. Henig, D. Kiefer, M. Geissler, S.G. Rykovanov, R. Ramis, R. Horlein, J. Osterhoff, Z. Major, L. Veisz, S. Karsch, F. Krausz, D. Habs, J. Schreiber, Phys. Rev. Lett. 102, 095002 (2009)

    Article  ADS  Google Scholar 

  27. Y. Fukuda, A.Y. Faenov, M. Tampo, T.A. Pikuz, T. Nakamura, M. Kando, Y. Hayashi, A. Yogo, H. Sakaki, T. Kameshima, A.S. Pirozhkov, K. Ogura, M. Mori, T.Z. Esirkepov, J. Koga, A.S. Boldarev, V.A. Gasilov, A.I. Magunov, T. Yamauchi, R. Kodama, P.R. Bolton, Y. Kato, T. Tajima, H. Daido, S.V. Bulanov, Phys. Rev. Lett. 103, 165002 (2009)

    Article  ADS  Google Scholar 

  28. T. Nakamura, S.V. Bulanov, T.Z. Esirkepov, M. Kando, Phys. Rev. Lett. 105, 135002 (2010)

    Article  ADS  Google Scholar 

  29. S.S. Bulanov, V.Y. Bychenkov, V. Chvykov, G. Kalinchenko, D.W. Litzenberg, T. Matsuoka, A.G.R. Thomas, L. Willingale, V. Yanovsky, K. Krushelnick, A. Maksimchuk, Phys. Plasmas 17, 043105 (2010)

    Article  ADS  Google Scholar 

  30. L. Willingale, S.P.D. Mangles, P.M. Nilson, R.J. Clarke, A.E. Dangor, M.C. Kaluza, S. Karsch, K.L. Lancaster, W.B. Mori, Z. Najmudin, J. Schreiber, A.G.R. Thomas, M.S. Wei, K. Krushelnick, Phys. Rev. Lett. 96, 245002 (2006)

    Article  ADS  Google Scholar 

  31. M.S. Wei, S.P.D. Mangles, Z. Najmudin, B. Walton, A. Gopal, M. Tatarakis, A.E. Dangor, E.L. Clark, R.G. Evans, S. Fritzler, R.J. Clarke, C. Hernandez-Gomez, D. Neely, W. Mori, M. Tzoufras, K. Krushelnick, Phys. Rev. Lett. 93, 155003 (2004)

    Article  ADS  Google Scholar 

  32. L. Willingale, S.R. Nagel, A.G.R. Thomas, C. Bellei, R.J. Clarke, A.E. Dangor, R. Heathcote, M.C. Kaluza, C. Kamperidis, S. Kneip, K. Krushelnick, N. Lopes, S.P.D. Mangles, W. Nazarov, P.M. Nilson, Z. Najmudin, Phys. Rev. Lett. 102, 125002 (2009)

    Article  ADS  Google Scholar 

  33. A. Upadhyay, K. Patel, B.S. Rao, P.A. Naik, P.D. Gupta, Pramana J. Phys. 78, 613 (2012)

    Article  ADS  Google Scholar 

  34. A.I. Akhiezer, R.V. Polovin, Sov. Phys. JETP 3, 696 (1956)

    Google Scholar 

  35. P. Kaw, J. Dawson, Phys. Fluids 13, 472 (1970)

    Article  ADS  Google Scholar 

  36. C. Max, F. Perkins, Phys. Rev. Lett. 27, 1342 (1971)

    Article  ADS  Google Scholar 

  37. A. Macchi, S. Veghini, T.V. Liseykina, F. Pegoraro, New J. Phys. 12, 145013 (2010)

    Article  Google Scholar 

  38. F. Pegoraro, S.V. Bulanov, Phys. Rev. Lett. 99, 065002 (2007)

    Article  ADS  Google Scholar 

  39. F. Brunel, Phys. Rev. Lett. 59, 52 (1987)

    Article  ADS  Google Scholar 

  40. M. Chen, A. Pukhov, Z.M. Sheng, X.Q. Yan, Phys. Plasmas 15, 113103 (2008)

    Article  ADS  Google Scholar 

  41. A.V. Brantov, VYu. Bychenkov, Plasma Phys. Rep. 36, 256 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are thankful to the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), Government of India, for providing us the financial support via. Project No. 2012/34/61/BRNS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deep Kumar Kuri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuri, D.K., Das, N. & Patel, K. Role of target thickness in proton acceleration from near-critical mass-limited plasmas. Appl. Phys. B 123, 201 (2017). https://doi.org/10.1007/s00340-017-6779-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6779-7

Navigation