Skip to main content

Narrow-line external cavity diode laser micro-packaging in the NIR and MIR spectral range


Narrow-linewidth tunable diode lasers are an important tool for spectroscopic instrumentation. Conventional external cavity diode lasers offer high output power and narrow linewidth. However, most external cavity diode lasers are designed as laboratory instrument and do not allow portability. In comparison, other commonly used lasers, like distributed feedback lasers (DFB) that are capable of driving a handheld device, are limited in power and show linewidths which are not sufficiently narrow for certain applications. We present new miniaturized types of tunable external cavity diode laser which overcome the drawbacks of conventional external cavity diode lasers and which preserve the advantages of this laser concept. Three different configurations are discussed in this article. The three types of miniaturized external cavity diode laser systems achieve power values of more than 50 mW within the 1.4 \(\mu\)m water vapor absorption band with excellent side-mode suppression and linewidth below 100 kHz. Typical features outstand with respect to other type of laser systems which are of extended use such as DFB laser diodes. The higher output power and the lower linewidth will enable a higher sensitivity and resolution for a wide range of applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    C.E. Wieman, L. Hollberg, Rev. Sci. Instrum. 62(1), 1–20 (1991)

    ADS  Article  Google Scholar 

  2. 2.

    W. Lewoczko-Adamczyk, C. Pyrlik, J. Hger, S. Schwertfeger, A. Wicht, A. Peters, G. Erbert, G. Trnkle, Opt. Express 23, 9705–9709 (2015)

    ADS  Article  Google Scholar 

  3. 3.

    E. Luvsandamdin, S. Spießberger, M. Schiemangk, A. Sahm, G. Mura, A. Wicht, A. Peters, G. Erbert, G. Tränkle, Appl. Phys. B 111, 255260 (2013)

    Article  Google Scholar 

  4. 4.

    J. D. Berger. Y. Zhang, J. D. Grade, H. Lee, S. Hrinya, H. Jerman, A. Fennema, A. Tselikov, D. Anthon: Proceedings of 27th European Conference on Optical Communications 2 (2001) 198–199

  5. 5.

    W. Huang, R.R.A. Syms, J. Stagg, A. Lohmann, IEE Proceedings - Science. Meas. Technol. 151(2), 67–75 (2004)

    Article  Google Scholar 

  6. 6.

    H. Cai, X. M. Zhang, J. Wu, D. Y. Tang, Q. X. Zhang, A. Q. Liu: Transducers 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference (2007) 1433–1436

  7. 7.

    S. Rauch, J. Sacher, IEEE Photonics Technol. Lett. 27(16), 1737–1740 (2015)

    ADS  Article  Google Scholar 

  8. 8.

    B. Jacobsson, V. Pasiskevicius, F. Laurell, V. Smirnov, L. Glebov: Conference on lasers and electro-optics/quantum electronics and laser science conference and photonic applications systems technologies (CTuY3) (2008)

  9. 9.

    S. Stry, S. Thelen, J. Sacher, D. Halmer, P. Hering, M. Mrtz, Appl. Phys. B 85(2), 365–374 (2006)

    ADS  Article  Google Scholar 

  10. 10.

    A. Elia, P.M. Lugarà, C. Di Franco, V. Spagnolo, Sensors 9, 9616–9628 (2009)

    Article  Google Scholar 

  11. 11.

    J. Sacher, D. Baums, P. Panknin, W. Elsässer, E.O. Göbel, Phys. Rev. A 45(3), 1893–1905 (1992)

    ADS  Article  Google Scholar 

  12. 12.

    L. Hildebrandt, R. Knispel, S. Stry, J.R. Sacher, F. Schael, Appl. Opt. 42(12), 2110–2118 (2003)

    ADS  Article  Google Scholar 

  13. 13.

    V.P. Gribkovskii, Progr. Quantum Electron. 19, 41–88 (1995)

    ADS  Article  Google Scholar 

  14. 14.

    F. K. Tittel, R. Lewicki, M. Jahjah, Y. Ma, P. Stefanski: 2012 Asia Communications and Photonics Conference (ACP) (2012) 1–1

  15. 15.

    L. Dong, J. Wright, B. Peters, B.A. Ferguson, F.K. Tittel, S. McWhorter, Appl. Phys. B 107, 459–467 (2012)

    ADS  Article  Google Scholar 

  16. 16.

    A.A. Kosterev, L. Dong, D. Thomazy, F.K. Tittel, S. Overby, Appl. Phys. B 101, 649–659 (2010)

    ADS  Article  Google Scholar 

  17. 17.

    A.A. Kosterev, Y.A. Bakhirkin, R.F. Curl, F.K. Tittel, Opt. Lett. 27, 19021904 (2002)

    Article  Google Scholar 

  18. 18.

    A.A. Kosterev, F.K. Tittel, D. Serebryakov, A. Malinovsky, A. Morozov, Rev. Sci. Instrum. 76, 19 (2005)

    Article  Google Scholar 

  19. 19.

    P. Patimisco, G. Scamarcio, F.K. Tittel, Vincenzo Spagnolo: Sensors 14(4), 6165–6206 (2014)

    Google Scholar 

  20. 20.

    M. Mordmüller, M. Köhring, W. Schade, U. Willer, Appl. Phys. B 119, 111–118 (2015)

    ADS  Article  Google Scholar 

Download references


We gratefully acknowledge the German Federal Ministry of Education and Research (BMBF) for the support of our research in the project CheqVAP, Grant Identifier No. 13N13402 and in the project PhotoBiosense, Grant Identifier No. 13N13822. Within this project the quartz enhanced photoacoustic experiments were done at the Institute for Energy Research and Physical Technologies at Clausthal University of Technology. For performing these measurements we specially thank Mario Mordmüller.

Author information



Corresponding author

Correspondence to A. Jiménez.

Additional information

This article is part of the topical collection “Field Laser Applications in Industry and Research” guest edited by Francesco D’Amato, Erik Kerstel, and Alan Fried.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiménez, A., Milde, T., Staacke, N. et al. Narrow-line external cavity diode laser micro-packaging in the NIR and MIR spectral range. Appl. Phys. B 123, 207 (2017).

Download citation