Skip to main content
Log in

Parametric Raman crystalline anti-Stokes laser at 503 nm with collinear beam interaction at tangential phase matching

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Stimulated-Raman-scattering in crystals can be used for the single-pass frequency-conversion to the Stokes-shifted wavelengths. The anti-Stokes shift can also be achieved but the phase-matching condition has to be fulfilled because of the parametric four-wave mixing process. To widen the angular-tolerance of four-wave mixing and to obtain high-conversion-efficiency into the anti-Stokes, we developed a new scheme of the parametric Raman anti-Stokes laser at 503 nm with phase-matched collinear beam interaction of orthogonally-polarized Raman components in calcite oriented at the phase-matched angle under 532 nm 20 ps laser excitation. The excitation laser beam was split into two orthogonally-polarized components entering the calcite at the certain incidence angles to fulfill the nearly collinear phase-matching and also to compensate walk-off of extraordinary waves for collinear beam interaction. The phase matching of parametric Raman interaction is tangential and insensitive to the angular mismatch if the Poynting vectors of the biharmonic pump and parametrically generated (anti-Stokes) waves are collinear. For the first time it allows to achieve experimentally the highest conversion efficiency into the anti-Stokes wave (503 nm) up to 30% from the probe wave and up to 3.5% from both pump and probe waves in the single-pass picosecond parametric calcite Raman laser. The highest anti-Stokes pulse energy was 1.4 \(\upmu\)J.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Reiser, T.D. Raymond, R.B. Michie, A.P. Hickman, Efficient anti-Stokes Raman conversion in collimated beams. J. Opt. Soc. Am. B 6, 1859–1869 (1989)

    Article  ADS  Google Scholar 

  2. A.Z. Grasiuk, L.L. Losev, A.P. Lutsenko, S.N. Sazonov, Raman parametric generation of anti-Stokes radiation under conditions of amplification of an external Stokes signal. Sov. J. Quantum Electron. 20(5), 529–532 (1990)

    Article  ADS  Google Scholar 

  3. A.Z. Grasiuk, S.V. Kubasov, L.L. Losev, Picosecond parametric Raman laser based on KGd(WO\({}_{4}\))\({}_{2}\) crystal. Opt. Comm. 240, 239–244 (2004)

    Article  ADS  Google Scholar 

  4. R. Chiao, B.P. Stoicheff, Angular dependence of maser-stimulated Raman radiation in calcite. Phys. Rev. Lett. 12, 290–293 (1964)

    Article  ADS  Google Scholar 

  5. A.Z. Grasiuk, L.L. Losev, A.P. Lutsenko, S.N. Sazonov, Parametric Raman anti-Stokes laser. Sov. J. Quantum Electron. 20(10), 1153–1155 (1990)

    Article  ADS  Google Scholar 

  6. R.P. Mildren, D.W. Coutts, D.J. Spence, All-solid-state parametric Raman anti-Stokes laser at 508 nm. Opt. Express 17, 810–818 (2009)

    Article  ADS  Google Scholar 

  7. C. Wang, X. Zhang, Q. Wang, Zh Cong, Zh Liu, W. Wei, W. Wang, Zh Wu, Yu. Zhang, L. Li, X. Chen, P. Li, H. Zhang, Sh Ding, Extracavity pumped BaWO\({}_{4}\) anti-Stokes Raman laser. Opt. Express 21, 26014–26026 (2013)

    Article  ADS  Google Scholar 

  8. J.A. Giordmaine, W. Kaiser, Light scattering by coherently driven lattice vibrations. Phys. Rev. 144, 676–690 (1966)

    Article  ADS  Google Scholar 

  9. S.N. Smetanin, A.V. Fedin, A.S. Shurygin, Realisation of four-wave mixing phase matching for frequency components at intracavity stimulated Raman scattering in a calcite crystal. Quantum Electron. 43, 512–518 (2013)

    Article  ADS  Google Scholar 

  10. S.N. Smetanin, M. Jelinek, V. Kubecek, H. Jelinkova, A.S. Shurygin, Four-wave-mixing and nonlinear cavity dumping of 280 picosecond 2nd Stokes pulse at 1.3 \(\mu\)m from Nd:SrMoO\(_{4}\) self-Raman laser. Laser Phys. Lett. 13, 015801 (2016)

    Article  ADS  Google Scholar 

  11. S.N. Smetanin, M. Jelinek, V. Kubecek, H. Jelinkova, Low-threshold collinear parametric Raman comb generation in calcite under 532 and 1064 nm picosecond laser pumping. Laser Phys. Lett. 12, 095403 (2015)

    Article  ADS  Google Scholar 

  12. M.C. Pujol, M. Rico, C. Zaldo, R. Sol, V. Nikolov, X. Solans, M. Aguil, F. Daz, Crystalline structure and optical spectroscopy of Er\(^{3+}\)-doped KGd(WO\(_{4}\))\({}_{2}\) single crystals. Appl. Phys. B 68, 187–197 (1999)

    Article  ADS  Google Scholar 

  13. J. Warner, Phase-matching for optical up-conversion with maximum angular aperture—theory and practice. Opto-Electronics 1, 25–28 (1969)

    Article  Google Scholar 

  14. N.P. Barnes, J. Corcoran, Parametric generation processes: special bandwidth and acceptance angles. Appl. Opt. 15, 696–699 (1976)

    Article  ADS  Google Scholar 

  15. M.J.T. Milton, T.J. McIlveen, D.C. Hanna, P.T. Woods, High-efficiency infrared generation by difference-frequency mixing using tangential phase matching. Opt. Comm. 87, 273–277 (1992)

    Article  ADS  Google Scholar 

  16. V.G. Dmitriev, G.G. Gurzadyan, D.N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, Berlin, 1999)

    Book  Google Scholar 

  17. Handbook of Optics. Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum Optics. Third Edition / Ed. by M. Bass (New York: The McGraw-Hill Companies, Inc., 2010)

  18. S.N. Smetanin, M.E. Doroshenko, L.I. Ivleva, M. Jelinek, V. Kubecek, H. Jelinkova, Low-threshold parametric Raman generation of high-order Raman components in crystals. Appl. Phys. B 117, 225–234 (2014)

    Article  ADS  Google Scholar 

  19. S.A. Akhmanov, N.I. Koroteev, Spectroscopy of light scattering and nonlinear optics. Nonlinear-optical methods of active spectroscopy of Raman and Rayleigh scattering. Sov. Phys. Usp. 20(11), 899–936 (1977)

    Article  ADS  Google Scholar 

  20. S.S. Sementsov, L.D. Khazov, Anisotropy of the stimulated Raman scattering in Iceland spar. Sov. J. Quantum Electron. 5(1), 114–114 (1975)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Czech Science Foundation (Project No. 16-10019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Smetanin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smetanin, S.N., Jelínek, M. & Kubeček, V. Parametric Raman crystalline anti-Stokes laser at 503 nm with collinear beam interaction at tangential phase matching. Appl. Phys. B 123, 203 (2017). https://doi.org/10.1007/s00340-017-6776-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6776-x

Navigation