Advertisement

Applied Physics B

, 123:188 | Cite as

Second-order nonlinear optical microscopy of spider silk

  • Yue Zhao
  • Khuat Thi Thu Hien
  • Goro Mizutani
  • Harvey N. Rutt
Article

Abstract

Asymmetric \(\upbeta \)-sheet protein structures in spider silk should induce nonlinear optical interaction such as second harmonic generation (SHG) which is experimentally observed for a radial line and dragline spider silk using an imaging femtosecond laser SHG microscope. By comparing different spider silks, we found that the SHG signal correlates with the existence of the protein \(\upbeta \)-sheets. Measurements of the polarization dependence of SHG from the dragline indicated that the \(\upbeta \)-sheet has a nonlinear response depending on the direction of the incident electric field. We propose a model of what orientation the \(\upbeta \)-sheet takes in spider silk.

References

  1. 1.
    S. Kubik, Angew. Chem. Int. Ed. 41, 2721–2723 (2002)CrossRefGoogle Scholar
  2. 2.
    J.M. Gosline, M.W. Denny, M.E. DeMont, Nature 309, 551–552 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    F. Vollrath, D. Porter, Soft Matter 2, 377–385 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    J.M. Gosline, P.A. Guerette, C.S. Ortlepp, K.N. Savage, J. Exp. Biol. 202, 3295–3303 (1999)Google Scholar
  5. 5.
    A. Sponner, E. Unger, F. Grosse, K. Weisshart, Biomacromolecules 5, 840–845 (2004)CrossRefGoogle Scholar
  6. 6.
    D. Kaplan, W.W. Adams, B. Farmer, C. Viney, Silk Polymers: Materials Science and Biotechnology (American Chemical Society, Washington, DC, 1994)Google Scholar
  7. 7.
    D.T. Grubb, L.W. Jelinski, Macromolecules 30, 2860–2867 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    R.V. Lewis, Chem. Rev. 106, 3762–3774 (2006)CrossRefGoogle Scholar
  9. 9.
    C.L. Craig, Spiderwebs and Silk: Tracing Evolution from Molecules to Genes to Phenotypes (Oxford University Press, Oxford, 2003)Google Scholar
  10. 10.
    R.F. Foelix, et al., Biology of Spiders (Harvard University Press, London, 1982)Google Scholar
  11. 11.
    S.O. Andersen, Comp. Biochem. Physiol. 35, 705–711 (1970)CrossRefGoogle Scholar
  12. 12.
    P.A. Guerette, D.G. Ginzinger, B.H.F. Weber, J.M. Gosline, Science 272, 112 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    J. Gatesy, C. Hayashi, D. Motriuk, J. Woods, R. Lewis, Science 291, 2603–2605 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    J.E. Garb, T. DiMauro, V. Vo, C.Y. Hayashi, Science 312, 1762 (2006)CrossRefGoogle Scholar
  15. 15.
    L. Römer, T. Scheibel, Prion 2, 154–161 (2008)CrossRefGoogle Scholar
  16. 16.
    J.D. Van Beek, S. Hess, F. Vollrath, B.H. Meier, Proc. Natl. Acad. Sci. USA 99, 10266–10271 (2002)CrossRefGoogle Scholar
  17. 17.
    A.H. Simmons, C.A. Michal, L.W. Jelinski, Science 271, 84–87 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Termonia, Macromolecules 27, 7378–7381 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    J. Kümmerlen, J.D. Van Beek, F. Vollrath, B.H. Meier, Macromolecules 29, 2920–2928 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    J.D. Van Beek, J. Kümmerlen, F. Vollrath, B.H. Meier, Int. J. Biol. Macromol. 24, 173–178 (1999)CrossRefGoogle Scholar
  21. 21.
    C.Y. Hayashi, R.V. Lewis, J. Mol. Biol. 275, 773–784 (1998)CrossRefGoogle Scholar
  22. 22.
    N.D. Lazo, D.T. Downing, Macromolecules 32, 4700–4705 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    M.A. Colgin, R.V. Lewis, Protein Sci. 7, 667–672 (1998)CrossRefGoogle Scholar
  24. 24.
    M.S. Engster, Cell Tissue Res. 169, 77–92 (1976)CrossRefGoogle Scholar
  25. 25.
    D.H. Hijirida, K.G. Do, C. Michal, S. Wong, D. Zax, L.W. Jelinski, Biophys. J. 71, 3442–3447 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    J.P. O’Brien, S.R. Fahnestock, Y. Termonia, K.H. Gardner, Adv. Mater. 10, 1185–1195 (1998)CrossRefGoogle Scholar
  27. 27.
    E.J. Spek, H.C. Wu, N.R. Kallenbach, J. Am. Chem. Soc. 119, 5053–5054 (1997)CrossRefGoogle Scholar
  28. 28.
    F. Vollrath, D.P. Knight, Nature 410, 541–548 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    C.Y. Hayashi, N.H. Shipley, R.V. Lewis, Int. J. Biol. Macromol. 24, 271–275 (1999)CrossRefGoogle Scholar
  30. 30.
    N. Becker, E. Oroudjev, S. Mutz, J.P. Cleveland, P.K. Hansma, C.Y. Hayashi, D.E. Makarov, H.G. Hansma, Nature Mater. 2, 278–283 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    D. Schneider, N. Gomopoulos, C.Y. Koh, P. Papadopoulos, F. Kremer, E.L. Thomas, G. Fytas, Nature Mater. 15, 1079–1083 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    B.L. Thiel, C. Viney, Science 273, 1477–1480 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    J.O. Warwicker, J. Mol. Biol. 2, 350–362, IN1 (1960)Google Scholar
  34. 34.
    S. Keten, Z. Xu, B. Ihle, M.J. Buehler, Nature Mater. 9, 359–367 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    W.L. Rice, S. Firdous, S. Gupta, M. Hunter, C.W.P. Foo, Y. Wang, H.J. Kim, D.L. Kaplan, I. Georgakoudi, Biomaterials 29, 2015–2024 (2008)CrossRefGoogle Scholar
  36. 36.
    F.S. Pavone, P.J. Campagnola, Second Harmonic Generation Imaging Ch. 18 (CRC Press, London, 2013), pp. 421–422Google Scholar
  37. 37.
    D.P. Knight, F. Vollrath, Proc. R. Soc. B 266, 519–523 (1999)CrossRefGoogle Scholar
  38. 38.
    R.W. Work, Text. Res. J. 47, 650–662 (1977)CrossRefGoogle Scholar
  39. 39.
    J.A. Kluge, O. Rabotyagova, G.G. Leisk, D.L. Kaplan, Trends Biotechnol. 26, 244–251 (2008)CrossRefGoogle Scholar
  40. 40.
    C. Riekel, C. Bränden, C. Craig, C. Ferrero, F. Heidelbach, M. Müller, Int. J. Biol. Macromol. 24, 179–186 (1999)CrossRefGoogle Scholar
  41. 41.
    C. Riekel, M. Müller, F. Vollrath, Macromolecules 32, 4464–4466 (1999)ADSCrossRefGoogle Scholar
  42. 42.
    A.D. Parkhe, S.K. Seeley, K. Gardner, L. Thompson, R.V. Lewis, J. Mol. Recognit. 10, 1–6 (1997)CrossRefGoogle Scholar
  43. 43.
    C. Riekel, F. Vollrath, Int. J. Biol. Macromol. 29, 203–210 (2001)CrossRefGoogle Scholar
  44. 44.
    O. Liivak, A. Flores, R. Lewis, L.W. Jelinski, Macromolecules 30, 7127–7130 (1997)ADSCrossRefGoogle Scholar
  45. 45.
    Y. Zhao, K.T.T. Hien, G. Mizutani, H.N. Rutt, K. Amornwachirabodee, M. Okajima, T. Kaneko, J. Opt. Soc. Am. A 34, 146 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39, 3798–3813 (1968)ADSCrossRefGoogle Scholar
  47. 47.
    D.J. Little, D.M. Kane, Opt. Express 19, 19182–19189 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    N.A. Tuan, Y. Miyauchi, G. Mizutani, Jpn. J. Appl. Phys. 51, 122402 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    R.A. Soref, H.W. Moos, J. Appl. Phys. 35, 2152–2158 (1964)ADSCrossRefGoogle Scholar
  50. 50.
    S.J. Czyzak, W.M. Baker, R.C. Crane, J.B. Howe, J. Opt. Soc. Am. A 47, 240–243 (1957)ADSCrossRefGoogle Scholar
  51. 51.
    H.P. Wagner, M. Kühnelt, W. Langbein, J.M. Hvam, Phys. Rev. B 58, 10494 (1998)ADSCrossRefGoogle Scholar
  52. 52.
    Y.R. Shen, The principles of nonlinear optics (Wiley-Interscience, New York, 1984)Google Scholar
  53. 53.
    H.J. Jin, J. Park, V. Karageorgiou, U.J. Kim, R. Valluzzi, P. Cebe, D.L. Kaplan, Adv. Funct. Mater. 15, 1241–1247 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Materials ScienceJapan Advanced Institute of Science and TechnologyNomiJapan
  2. 2.School of Electronic and Computer ScienceUniversity of SouthamptonSouthamptonUK

Personalised recommendations