Skip to main content
Log in

Raman self-induced-transparency soliton trains in hollow-core photonic crystals

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Periodic trains of non-topological dark and bright optical solitons are proposed as one of the possible nonlinear optical structures that could be generated during Raman transitions in nonlinear hollow-core photonic crystal fibers filled with gas. It is shown that Stokes-like probe fields, generated by stimulated Raman transitions upon propagation of the master pump in the hollow-core fiber, form a broadband spectrum, whose discrete branch is populated by several distinct localized periodic soliton modes with well-defined “quantum numbers”. Such soliton trains, which are intended to complement recently proposed single-pulse and single-dark solitons for multi-channel communication applications, can be formed by temporal quantum entanglements of the single-soliton fields. Attention is laid on a possibility to generate such soliton trains in the absence of Kerr nonlinearity, and total controllability of their shape profiles including their temporal periods and average widths is demonstrated through variations of characteristic parameters of the hollow-core photonic crystal fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. P.S.J. Russell, Science 299, 358 (2003)

    Article  ADS  Google Scholar 

  2. F. Benabid, J.G. Bouwmans, J.C. Knight, P.S.J. Russell, F. Couny, Phys. Rev. Lett. 93, 123903 (2004)

    Article  ADS  Google Scholar 

  3. S. Ghosh, J.E. Sharping, D.G. Ouzounov, A.L. Goeta, Phys. Rev. Lett. 94, 093902 (2005)

    Article  ADS  Google Scholar 

  4. D.G. Ouzounov, F.R. Ahmad, D. Müller, N. Venkataraman, M.T. Gallagher, M.G. Thomas, J. Silcox, K.W. Koch, A.L. Gaeta, Science 301, 1702 (2003)

    Article  ADS  Google Scholar 

  5. A.D. Bessonov, A.M. Zheltikov, Phys. Rev. E 73, 066618 (2006)

    Article  ADS  Google Scholar 

  6. C.M. Smith, N. Venkataraman, M.T. Gallagher, D.M. Müller, J.A. West, N.F. Borrelli, D.C. Alan, K.W. Koch, Nature 424, 657 (2003)

    Article  ADS  Google Scholar 

  7. M.J. Konopnicki, J.H. Eberly, Phys. Rev. A 24, 2567 (1981)

    Article  ADS  Google Scholar 

  8. A.I. Maimistov, M. Basharov, Nonlinear Optical Waves (Springer, Berlin, 1999)

    Book  MATH  Google Scholar 

  9. A.C. Newell, J.V. Moloney, Nonlinear Optics (Addison-Wesley, Redwood City, 1992)

    MATH  Google Scholar 

  10. R. Grobe, F.T. Hioe, J.H. Eberly, Phys. Rev. Lett. 73, 3183 (1994)

    Article  ADS  Google Scholar 

  11. A. Kasapi, M. Jain, G.Y. Yin, S.E. Harris, Phys. Rev. Lett. 74, 2447 (1995)

    Article  ADS  Google Scholar 

  12. J. Cheng, S. Han, Y.J. Yan, Opt. Lett. 30, 2638 (2005)

    Article  ADS  Google Scholar 

  13. F. Luan, J. Knight, P. Russell, S. Campbell, D. Xiao, D. Reid, B. Mangan, D. Williams, P. Roberts, Opt. Express 12, 835 (2004)

    Article  ADS  Google Scholar 

  14. F. Gerome, K. Cook, A.K. George, W.J. Wadsworth, J.C. Knight, Opt. Express 15, 7126 (2007)

    Article  ADS  Google Scholar 

  15. D.G. Ouzounov, C. Hensley, A. Gaeta, N. Venkateraman, M. Gallagher, K. Koch, Opt. Express 13, 6153 (2005)

    Article  ADS  Google Scholar 

  16. A.V. Gorbach, D.V. Skryabin, Opt. Express 16, 4858 (2008)

    Article  ADS  Google Scholar 

  17. T.M. Makhviladze, M.E. Sarychev, Sov. Phys. JETP 44, 471 (1977)

    ADS  Google Scholar 

  18. A.E. Kaplan, Phys. Rev. Lett. 73, 1243 (1994)

    Article  ADS  Google Scholar 

  19. J. Laegsgaard, Appl. Phys. B 95, 293 (2009)

    Article  ADS  Google Scholar 

  20. D.V. Skryabin, A.V. Yulin, F. Biancalana, Phy. Rev. E 73, 045603 (2006)

    Article  ADS  Google Scholar 

  21. Y.S. Kivshar, G.P. Agrawal, Optical solitons: from fibers to photonic crystals (Academic press, 2003)

  22. A.M. Dikandé, Phys. Rev. A 81, 013821 (2010)

    Article  ADS  Google Scholar 

  23. A.M. Dikandé, J. Opt. 13, 035203 (2011)

    Article  ADS  Google Scholar 

  24. D. Fandio Jubgang Jr., A.M. Dikandé, A. Sunda-Meya, Phys. Rev. A 92, 053850 (2015)

  25. D. Fandio Jubgang Jr., A.M. Dikandé, J. Opt. Soc. Am. B 34, 2721 (2017)

  26. M. Abramowitz, I.A. Stegun, Handbook of mathematical munctions (Dover, New York, 1968)

    Google Scholar 

  27. F.M. Arscott, I.M. Khabaza, Tables of Lamé polynomials, mathematical tables series (Pergamon Press, Oxford, 1962)

    MATH  Google Scholar 

  28. A.M. Dikandé, Phys. Scrip. 60, 293 (1999)

    Article  ADS  Google Scholar 

  29. M.F. Saleh, W. Chang, P. Hölze, A. Nazarkin, J.C. Travers, N.Y. Joly, P.S.J. Russel, F. Biancalana, Phys. Rev. Lett 107, 203902 (2011)

  30. F. Tani, J.C. Travers, P.S.J. Russell, J. Op. Soc. Am. B 31, 311 (2014)

Download references

Acknowledgements

The work of A. M. Dikandé is supported by the Alexander von Humboldt foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain M. Dikandé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petmegni, D.S.M., Dikandé, A.M. & Essimbi, B.Z. Raman self-induced-transparency soliton trains in hollow-core photonic crystals. Appl. Phys. B 123, 171 (2017). https://doi.org/10.1007/s00340-017-6748-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6748-1

Navigation