Applied Physics B

, 123:171

Raman self-induced-transparency soliton trains in hollow-core photonic crystals

  • Duplex S. Mbieda Petmegni
  • Alain M. Dikandé
  • B. Z. Essimbi
Article

DOI: 10.1007/s00340-017-6748-1

Cite this article as:
Petmegni, D.S.M., Dikandé, A.M. & Essimbi, B.Z. Appl. Phys. B (2017) 123: 171. doi:10.1007/s00340-017-6748-1

Abstract

Periodic trains of non-topological dark and bright optical solitons are proposed as one of the possible nonlinear optical structures that could be generated during Raman transitions in nonlinear hollow-core photonic crystal fibers filled with gas. It is shown that Stokes-like probe fields, generated by stimulated Raman transitions upon propagation of the master pump in the hollow-core fiber, form a broadband spectrum, whose discrete branch is populated by several distinct localized periodic soliton modes with well-defined “quantum numbers”. Such soliton trains, which are intended to complement recently proposed single-pulse and single-dark solitons for multi-channel communication applications, can be formed by temporal quantum entanglements of the single-soliton fields. Attention is laid on a possibility to generate such soliton trains in the absence of Kerr nonlinearity, and total controllability of their shape profiles including their temporal periods and average widths is demonstrated through variations of characteristic parameters of the hollow-core photonic crystal fiber.

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Duplex S. Mbieda Petmegni
    • 1
    • 2
  • Alain M. Dikandé
    • 1
  • B. Z. Essimbi
    • 2
  1. 1.Laboratory of Research on Advanced Materials and Nonlinear SciencesDepartment of Physics, Faculty of Science, University of BueaBueaCameroon
  2. 2.Laboratory of Energy, Electronics and Electrical Systems, Department of Physics, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon

Personalised recommendations