Applied Physics B

, 123:171 | Cite as

Raman self-induced-transparency soliton trains in hollow-core photonic crystals

  • Duplex S. Mbieda Petmegni
  • Alain M. Dikandé
  • B. Z. Essimbi


Periodic trains of non-topological dark and bright optical solitons are proposed as one of the possible nonlinear optical structures that could be generated during Raman transitions in nonlinear hollow-core photonic crystal fibers filled with gas. It is shown that Stokes-like probe fields, generated by stimulated Raman transitions upon propagation of the master pump in the hollow-core fiber, form a broadband spectrum, whose discrete branch is populated by several distinct localized periodic soliton modes with well-defined “quantum numbers”. Such soliton trains, which are intended to complement recently proposed single-pulse and single-dark solitons for multi-channel communication applications, can be formed by temporal quantum entanglements of the single-soliton fields. Attention is laid on a possibility to generate such soliton trains in the absence of Kerr nonlinearity, and total controllability of their shape profiles including their temporal periods and average widths is demonstrated through variations of characteristic parameters of the hollow-core photonic crystal fiber.



The work of A. M. Dikandé is supported by the Alexander von Humboldt foundation.


  1. 1.
    P.S.J. Russell, Science 299, 358 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    F. Benabid, J.G. Bouwmans, J.C. Knight, P.S.J. Russell, F. Couny, Phys. Rev. Lett. 93, 123903 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    S. Ghosh, J.E. Sharping, D.G. Ouzounov, A.L. Goeta, Phys. Rev. Lett. 94, 093902 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    D.G. Ouzounov, F.R. Ahmad, D. Müller, N. Venkataraman, M.T. Gallagher, M.G. Thomas, J. Silcox, K.W. Koch, A.L. Gaeta, Science 301, 1702 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    A.D. Bessonov, A.M. Zheltikov, Phys. Rev. E 73, 066618 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    C.M. Smith, N. Venkataraman, M.T. Gallagher, D.M. Müller, J.A. West, N.F. Borrelli, D.C. Alan, K.W. Koch, Nature 424, 657 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    M.J. Konopnicki, J.H. Eberly, Phys. Rev. A 24, 2567 (1981)ADSCrossRefGoogle Scholar
  8. 8.
    A.I. Maimistov, M. Basharov, Nonlinear Optical Waves (Springer, Berlin, 1999)CrossRefMATHGoogle Scholar
  9. 9.
    A.C. Newell, J.V. Moloney, Nonlinear Optics (Addison-Wesley, Redwood City, 1992)MATHGoogle Scholar
  10. 10.
    R. Grobe, F.T. Hioe, J.H. Eberly, Phys. Rev. Lett. 73, 3183 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    A. Kasapi, M. Jain, G.Y. Yin, S.E. Harris, Phys. Rev. Lett. 74, 2447 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    J. Cheng, S. Han, Y.J. Yan, Opt. Lett. 30, 2638 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    F. Luan, J. Knight, P. Russell, S. Campbell, D. Xiao, D. Reid, B. Mangan, D. Williams, P. Roberts, Opt. Express 12, 835 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    F. Gerome, K. Cook, A.K. George, W.J. Wadsworth, J.C. Knight, Opt. Express 15, 7126 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    D.G. Ouzounov, C. Hensley, A. Gaeta, N. Venkateraman, M. Gallagher, K. Koch, Opt. Express 13, 6153 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    A.V. Gorbach, D.V. Skryabin, Opt. Express 16, 4858 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    T.M. Makhviladze, M.E. Sarychev, Sov. Phys. JETP 44, 471 (1977)ADSGoogle Scholar
  18. 18.
    A.E. Kaplan, Phys. Rev. Lett. 73, 1243 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    J. Laegsgaard, Appl. Phys. B 95, 293 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    D.V. Skryabin, A.V. Yulin, F. Biancalana, Phy. Rev. E 73, 045603 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Y.S. Kivshar, G.P. Agrawal, Optical solitons: from fibers to photonic crystals (Academic press, 2003)Google Scholar
  22. 22.
    A.M. Dikandé, Phys. Rev. A 81, 013821 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    A.M. Dikandé, J. Opt. 13, 035203 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    D. Fandio Jubgang Jr., A.M. Dikandé, A. Sunda-Meya, Phys. Rev. A 92, 053850 (2015)Google Scholar
  25. 25.
    D. Fandio Jubgang Jr., A.M. Dikandé, J. Opt. Soc. Am. B 34, 2721 (2017)Google Scholar
  26. 26.
    M. Abramowitz, I.A. Stegun, Handbook of mathematical munctions (Dover, New York, 1968)Google Scholar
  27. 27.
    F.M. Arscott, I.M. Khabaza, Tables of Lamé polynomials, mathematical tables series (Pergamon Press, Oxford, 1962)MATHGoogle Scholar
  28. 28.
    A.M. Dikandé, Phys. Scrip. 60, 293 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    M.F. Saleh, W. Chang, P. Hölze, A. Nazarkin, J.C. Travers, N.Y. Joly, P.S.J. Russel, F. Biancalana, Phys. Rev. Lett 107, 203902 (2011)Google Scholar
  30. 30.
    F. Tani, J.C. Travers, P.S.J. Russell, J. Op. Soc. Am. B 31, 311 (2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Duplex S. Mbieda Petmegni
    • 1
    • 2
  • Alain M. Dikandé
    • 1
  • B. Z. Essimbi
    • 2
  1. 1.Laboratory of Research on Advanced Materials and Nonlinear SciencesDepartment of Physics, Faculty of Science, University of BueaBueaCameroon
  2. 2.Laboratory of Energy, Electronics and Electrical Systems, Department of Physics, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon

Personalised recommendations