Advertisement

Applied Physics B

, 123:168 | Cite as

Cavity ring-down Faraday rotation spectroscopy for oxygen detection

  • Jonas Westberg
  • Gerard Wysocki
Article
Part of the following topical collections:
  1. Field Laser Applications in Industry and Research

Abstract

A combination of the path length enhancement provided by cavity ring-down spectroscopy together with the selectivity and noise suppression capabilities of Faraday rotation spectroscopy is utilized for highly sensitive detection of oxygen at ~762.3 nm. The system achieves a noise-equivalent rotation angle of 1.3 × 10−9 rad/√Hz, and a trace O2 detection limit of 160 ppb for 100 s of averaging. The technique relies on measurements of the losses in two orthogonal polarization directions simultaneously, whereby an absolute assessment of the magnetically induced polarization rotation can be retrieved, analogous to the absolute absorption measurement provided by stand-alone cavity ring-down spectroscopy. The differential nature of the technique described here eliminates the need for off-resonance decay measurements and thereby allows for efficient shot-to-shot fluctuation suppression. This is especially advantageous when operating the system under measurement conditions that severely affect the non-absorber related losses, such as particulate matter contamination typically present in combustion or open-path applications.

Keywords

Faraday Rotation Polarization Rotation Magnetic Circular Dichroism Axial Magnetic Field Faraday Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors gratefully acknowledge Marten Beels, Brian Siller, and Helen Waechter at Tiger Optics for useful discussions and insight regarding cavity ring-down spectroscopy. Financial support from the National Science Foundation (NSF) SECO EEC-1347523 Grant and CBET Grant #1507358 is also acknowledged.

References

  1. 1.
    X. Wang, O.S. Wolfbeis, Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem. Soc. Rev. 43, 3666–3761 (2014)CrossRefGoogle Scholar
  2. 2.
    M. Quaranta, S.M. Borisov, I. Klimant, Indicators for optical oxygen sensors. Bioanal. Rev. 4, 115–157 (2012)CrossRefGoogle Scholar
  3. 3.
    Keeling, What atmospheric oxygen measurements can tell us about the global carbon cycle. Glob. Biogeochem. Cycles 7, 37–67 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    B.B. Stephens, P.S. Bakwin, P.P. Tans, R.M. Teclaw, D.D. Baumann, Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations. J. Atmos. Ocean. Technol. 24, 82–94 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    E.J. Morgan, J.V. Lavrič, T. Seifert, T. Chicoine, A. Day, J. Gomez, R. Logan, J. Sack, T. Shuuya, E.G. Uushona, K. Vincent, U. Schultz, E.-G. Brunke, C. Labuschagne, R.L. Thompson, S. Schmidt, A.C. Manning, M. Heimann, Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert Atmospheric Observatory. Atmos. Meas. Tech. 8, 2233–2250 (2015)CrossRefGoogle Scholar
  6. 6.
    L. Gianfrani, R.W. Fox, L. Hollberg, Cavity-enhanced absorption spectroscopy of molecular oxygen. JOSA B 16, 2247–2254 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    B. Brumfield, G. Wysocki, Faraday rotation spectroscopy based on permanent magnets for sensitive detection of oxygen at atmospheric conditions. Opt. Express 20, 29727 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    R.J. Brecha, L.M. Pedrotti, D. Krause, Magnetic rotation spectroscopy of molecular oxygen with a diode laser. JOSA B 14, 1921–1930 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    D.M. Brown, A.M. Brown, P.S. Edwards, Z. Liu, C.R. Philbrick, Measurement of atmospheric oxygen using long-path supercontinuum absorption spectroscopy. J. Appl. Remote Sens. 8, 083557 (2014)CrossRefGoogle Scholar
  10. 10.
    X. Lou, G. Somesfalean, B. Chen, Z. Zhang, Oxygen measurement by multimode diode lasers employing gas correlation spectroscopy. Appl. Opt. 48, 990–997 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    D. Munzke, M. Böhm, O. Reich, Gaseous oxygen detection using hollow-core fiber-based linear cavity ring-down spectroscopy. J. Light. Technol. 33, 2524–2529 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    S. Neethu, R. Verma, S.S. Kamble, J.K. Radhakrishnan, P.P. Krishnapur, V.C. Padaki, Validation of wavelength modulation spectroscopy techniques for oxygen concentration measurement. Sens. Actuators B Chem. 192, 70–76 (2014)CrossRefGoogle Scholar
  13. 13.
    A. Pohlkötter, M. Köhring, U. Willer, W. Schade, Detection of molecular oxygen at low concentrations using quartz enhanced photoacoustic spectroscopy. Sensors 10, 8466–8477 (2010)CrossRefGoogle Scholar
  14. 14.
    M. Gupta, Highly-precise measurements of ambient oxygen using near-infrared cavity-enhanced laser absorption spectrometry. Anal. Chem. 84, 7987–7991 (2012)CrossRefGoogle Scholar
  15. 15.
    J. Hoffnagle, Measurement of atmospheric oxygen concentration by near-infrared absorption spectroscopy. American Geophysical Union, Fall Meeting, abstract A23E-0302 (2013)Google Scholar
  16. 16.
    A. Kaldor, W.B. Olson, A.G. Maki, Pollution monitor for nitric oxide: a laser device based on the zeeman modulation of absorption. Science 176, 508–510 (1972)ADSCrossRefGoogle Scholar
  17. 17.
    G. Litfin, C.R. Pollock, R.F.C. Jr, F.K. Tittel, Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect. J. Chem. Phys. 72, 6602–6605 (1980)ADSCrossRefGoogle Scholar
  18. 18.
    R. Lewicki, J.H. Doty, R.F. Curl, F.K. Tittel, G. Wysocki, Ultrasensitive detection of nitric oxide at 5.33 m by using external cavity quantum cascade laser-based Faraday rotation spectroscopy. Proc. Natl. Acad. Sci. 106, 12587–12592 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    T.A. Blake, C. Chackerian, J.R. Podolske, Prognosis for a mid-infrared magnetic rotation spectrometer for the in situ detection of atmospheric free radicals. Appl. Opt. 35, 973 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    E.J. Zhang, B. Brumfield, G. Wysocki, Hybrid Faraday rotation spectrometer for sub-ppm detection of atmospheric O2. Opt. Express. 22, 15957 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Wang, M. Nikodem, E. Zhang, F. Cikach, J. Barnes, S. Comhair, R.A. Dweik, C. Kao, G. Wysocki, Shot-noise limited faraday rotation spectroscopy for detection of nitric oxide isotopes in breath, urine, and blood. Sci. Rep. 5, 9096 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    G. Berden, R. Engeln, Cavity Ring-Down Spectroscopy: Techniques and Applications (Wiley, Oxford, 2009)CrossRefGoogle Scholar
  23. 23.
    G. Gagliardi, H.-P. Loock (eds.), Cavity-Enhanced Spectroscopy and Sensing (Springer, Berlin, 2014)Google Scholar
  24. 24.
    D.A. Long, A.J. Fleisher, S. Wójtewicz, J.T. Hodges, Quantum-noise-limited cavity ring-down spectroscopy. Appl. Phys. B 115, 149–153 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    J. Ye, L.-S. Ma, J.L. Hall, Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy. J. Opt. Soc. Am. B 15, 6 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    R. Engeln, G. Berden, E. van den Berg, G. Meijer, Polarization dependent cavity ring down spectroscopy. J. Chem. Phys. 107, 4458–4467 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    P. Cancio, I. Galli, S. Bartalini, G. Giusfredi, D. Mazzotti, P.D. Natale, Saturated-absorption cavity ring-down (SCAR) for high-sensitivity and high-resolution molecular spectroscopy in the Mid IR, in Cavity-enhanced spectroscopy and sensing, ed. by G. Gagliardi, H.-P. Loock (Springer, Berlin, 2014)Google Scholar
  28. 28.
    R.C. Jones, A new calculus for the treatment of optical systems VII properties of the N-matrices. J. Opt. Soc. Am. 38, 671 (1948)ADSCrossRefGoogle Scholar
  29. 29.
    T. Müller, K.B. Wiberg, P.H. Vaccaro, J.R. Cheeseman, M.J. Frisch, Cavity ring-down polarimetry (CRDP): theoretical and experimental characterization. JOSA B 19, 125–141 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    P. Dupré, Birefringence-induced frequency beating in high-finesse cavities by continuous-wave cavity ring-down spectroscopy. Phys. Rev. A 92, 053817 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    R. Brecha, L. Pedrotti, Analysis of imperfect polarizer effects in magnetic rotation spectroscopy. Opt. Express. 5, 101–113 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    T. Müller, K.B. Wiberg, P.H. Vaccaro, Cavity ring-down polarimetry (CRDP): a new scheme for probing circular birefringence and circular dichroism in the gas phase. J. Phys. Chem. A 104, 5959–5968 (2000)CrossRefGoogle Scholar
  33. 33.
    E. Zhang, Noise mitigation techniques for high-precision laser spectroscopy and integrated photonic chemical sensors. Princeton University, Princeton (2016)Google Scholar
  34. 34.
    H. Huang, K.K. Lehmann, Effects of linear birefringence and polarization-dependent loss of supermirrors in cavity ring-down spectroscopy. Appl. Opt. 47, 3817–3827 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    J.L. Hall, J. Ye, L.-S. Ma, Measurement of mirror birefringence at the sub-ppm level: proposed application to a test of QED. Phys. Rev. A 62, 013815 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    A.J. Fleisher, D.A. Long, Q. Liu, J.T. Hodges, Precision interferometric measurements of mirror birefringence in high-finesse optical resonators. Phys. Rev. A 93, 013833 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    M. Vallet, F. Bretenaker, A. Le Floch, R. Le Naour, M. Oger, The Malus Fabry–Perot interferometer. Opt. Commun. 168, 423–443 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    J. Morville, D. Romanini, Sensitive birefringence measurement in a high-finesse resonator using diode laser optical self-locking. Appl. Phys. B 74, 495–501 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    M. Durand, J. Morville, D. Romanini, Shot-noise-limited measurement of sub-parts-per-trillion birefringence phase shift in a high-finesse cavity. Phys. Rev. A 82, 031803 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    J.Y. Lee, H.-W. Lee, J.W. Kim, Y.S. Yoo, J.W. Hahn, Measurement of ultralow supermirror birefringence by use of the polarimetric differential cavity ringdown technique. Appl. Opt. 39, 1941–1945 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    H. Huang, Noise Studies in CW Cavity Ring-Down Spectroscopy and Its Application in Trace Gas Detection (Princeton University, Princeton, 2009)Google Scholar
  42. 42.
    P. Werle, R. Mücke, F. Slemr, The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS). Appl. Phys. B 57, 131–139 (1993)ADSCrossRefGoogle Scholar
  43. 43.
    Y. Wang, M. Nikodem, G. Wysocki, Cryogen-free heterodyne-enhanced mid-infrared Faraday rotation spectrometer. Opt. Express 21, 740 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    P. Kluczynski, S. Lundqvist, J. Westberg, O. Axner, Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm. Appl. Phys. B 103, 451–459 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    D. Sofikitis, L. Bougas, G.E. Katsoprinakis, A.K. Spiliotis, B. Loppinet, T.P. Rakitzis, Evanescent-wave and ambient chiral sensing by signal-reversing cavity ringdown polarimetry. Nature 514, 76–79 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    L. Bougas, D. Sofikitis, G.E. Katsoprinakis, A.K. Spiliotis, P. Tzallas, B. Loppinet, T.P. Rakitzis, Chiral cavity ring down polarimetry: chirality and magnetometry measurements using signal reversals. J. Chem. Phys. 143, 104202 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Electrical EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations