Skip to main content
Log in

An interband cascade laser-based in situ absorption sensor for nitric oxide in combustion exhaust gases

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A direct absorption nitric oxide sensor for combustion exhaust gas measurements, based on an interband cascade laser operating at 5.2 µm, is presented. The sensor was applied to the hot air co-flow of an auto-ignition test rig (800–1300 K), which contains nitric oxide mole fractions of the order of 1 mol%, due to prior microwave plasma heating. The effect of non-uniform temperature along the beam path, on both absorption line strength and gas density, was included in mole fraction measurements at various co-flow temperatures and velocities. At an absorption length of only 82 mm, a noise-limited detection limit of 30 ppm with a 10 ms observation time was achieved at 800 K. The results were compared in detail to previously measured mole fractions, using a sampling gas analyzer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Warnatz, U. Maas, R.W. Dibble, Combustion (Springer, Berlin, 2006)

    MATH  Google Scholar 

  2. J.H. Seinfeld, S.N. Pandis, Atmospheric chemistry and physics (Wiley, Hoboken, 2016)

    Google Scholar 

  3. P.J. Barnes, R.A. Dweik, A.F. Gelb, P.G. Gibson, S.C. George, H. Grasemann, I.D. Pavord, F. Ratjen, P.E. Silkoff, D.R. Taylor, N. Zamel, Chest (2010). doi:10.1378/chest.09-2090

    Google Scholar 

  4. M.G. Allen, Meas. Sci. Technol. 9, 545 (1998)

    Article  ADS  Google Scholar 

  5. J. Hodgkinson, R.P. Tatam, Meas. Sci. Technol. (2013). doi:10.1088/0957-0233/24/1/012004

    Google Scholar 

  6. S.F. Hanna, R. Barron-Jimenez, T.N. Anderson, R.P. Lucht, J.A. Caton, T. Walther, Appl. Phys. B (2002). doi:10.1007/s00340-002-0974-9

    Google Scholar 

  7. D.B. Oh, A.C. Stanton, Appl. Opt. (1997). doi:10.1364/AO.36.003294

    Google Scholar 

  8. D.M. Sonnenfroh, M.G. Allen, Appl. Opt. (1997). doi:10.1364/AO.36.007970

    Google Scholar 

  9. P.K. Falcone, R.K. Hanson, C.H. Kruger, Combust. Sci. Technol. (1983). doi:10.1080/00102208308923704

    Google Scholar 

  10. T.N. Anderson, R.P. Lucht, R. Barron-Jimenez, S.F. Hanna, J.A. Caton, T. Walther, S. Roy, M.S. Brown, J.R. Gord, I. Critchley, L. Flamand, Appl. Opt. (2005). doi:10.1364/AO.44.001491

    Google Scholar 

  11. T.N. Anderson, R.P. Lucht, S. Priyadarsan, K. Annamalai, J.A. Caton, Appl. Opt. (2007). doi:10.1364/AO.46.003946

    Google Scholar 

  12. F. Capasso, Opt. Eng. (2010). doi:10.1117/1.3505844

    Google Scholar 

  13. J. Jágerská, P. Jouy, B. Tuzson, H. Looser, M. Mangold, P. Soltic, A. Hugi, R. Brönnimann, J. Faist, L. Emmenegger, Opt. Express (2015). doi:10.1364/OE.23.001512

    Google Scholar 

  14. Y.A. Bakhirkin, A.A. Kosterev, R.F. Curl, F.K. Tittel, D.A. Yarekha, L. Hvozdara, M. Giovannini, J. Faist, Appl. Phys. B (2006). doi:10.1007/s00340-005-2058-0

    Google Scholar 

  15. L. Dong, V. Spagnolo, R. Lewicki, F.K. Tittel, Opt. Express (2011). doi:10.1364/OE.19.024037

    Google Scholar 

  16. V.L. Kasyutich, R.J. Holdsworth, P.A. Martin, Appl. Phys. B (2008). doi:10.1007/s00340-008-3097-0

    Google Scholar 

  17. A.A. Kosterev, A.L. Malinovsky, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, Appl. Opt. (2001). doi:10.1364/AO.40.005522

    Google Scholar 

  18. M.R. McCurdy, Y.A. Bakhirkin, F.K. Tittel, Appl. Phys. B (2006). doi:10.1007/s00340-006-2365-0

    Google Scholar 

  19. J.B. McManus, D.D. Nelson, S.C. Herndon, J.H. Shorter, M.S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, J. Faist, Appl. Phys. B (2006). doi:10.1007/s00340-006-2407-7

    Google Scholar 

  20. D.D. Nelson, J.H. Shorter, J.B. McManus, M.S. Zahniser, Appl. Phys. B Lasers Opt. (2002). doi:10.1007/s00340-002-0979-4

    Google Scholar 

  21. C. Roller, K. Namjou, J. Jeffers, W. Potter, P.J. McCann, J. Grego, Opt. Lett. (2002). doi:10.1364/OL.27.000107

    Google Scholar 

  22. M.L. Silva, D.M. Sonnenfroh, D.I. Rosen, M.G. Allen, A.O. Keefe, Appl. Phys. B (2005). doi:10.1007/s00340-005-1922-2

    Google Scholar 

  23. V. Spagnolo, A.A. Kosterev, L. Dong, R. Lewicki, F.K. Tittel, Appl. Phys. B (2010). doi:10.1007/s00340-010-3984-z

    Google Scholar 

  24. W.H. Weber, J.T. Remillard, R.E. Chase, J.F. Richert, F. Capasso, C. Gmachl, A.L. Hutchinson, D.L. Sivco, J.N. Baillargeon, A.Y. Cho, Appl. Spectrosc. (2002). doi:10.1366/000370202760077414

    Google Scholar 

  25. X. Chao, J.B. Jeffries, R.K. Hanson, Proc. Combust. Inst. (2011). doi:10.1016/j.proci.2010.05.014

    Google Scholar 

  26. X. Chao, J.B. Jeffries, R.K. Hanson, Appl. Phys. B (2012). doi:10.1007/s00340-011-4839-y

    Google Scholar 

  27. S. Wehe, M. Allen, Xiang Liu, J. Jeffries, R. Hanson, Proc. IEEE Sens. (IEEE Cat. No.03CH37498) (2003). doi:10.1109/ICSENS.2003.1279052

    Google Scholar 

  28. G. Wysocki, A.A. Kosterev, F.K. Tittel, Appl. Phys. B (2005). doi:10.1007/s00340-005-1764-y

    Google Scholar 

  29. R. Lewicki, J.H. Doty, R.F. Curl, F.K. Tittel, G. Wysocki, Proc. Natl. Acad. Sci. USA (2009). doi:10.1073/pnas.0906291106

    Google Scholar 

  30. Z. Li, C. Shi, W. Ren, Opt. Lett. (2016). doi:10.1364/OL.41.004095

    Google Scholar 

  31. R.Q. Yang, Superlattices Microstruct. (1995). doi:10.1006/spmi.1995.1017

    Google Scholar 

  32. I. Vurgaftman, R. Weih, M. Kamp, J.R. Meyer, C.L. Canedy, C.S. Kim, M. Kim, W.W. Bewley, C.D. Merritt, J. Abell, S. Höfling, J. Phys. D Appl. Phys. (2015). doi:10.1088/0022-3727/48/12/123001

    Google Scholar 

  33. L. Dong, F.K. Tittel, C. Li, N.P. Sanchez, H. Wu, C. Zheng, Y. Yu, A. Sampaolo, R.J. Griffin, Opt. Express (2016). doi:10.1364/OE.24.00A528

    Google Scholar 

  34. L. Dong, Y. Yu, C. Li, S. So, F.K. Tittel, Opt. Express (2015). doi:10.1364/OE.23.019821

    Google Scholar 

  35. S. Lundqvist, P. Kluczynski, R. Weih, M. von Edlinger, L. Nahle, M. Fischer, A. Bauer, S. Hofling, J. Koeth, Appl. Opt. (2012). doi:10.1364/AO.51.006009

    Google Scholar 

  36. K.M. Manfred, G.A.D. Ritchie, N. Lang, J. Röpcke, J.H. van Helden, Appl. Phys. Lett. (2015). doi:10.1063/1.4922149

    Google Scholar 

  37. R. Sur, S. Wang, K. Sun, D.F. Davidson, J.B. Jeffries, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transf. (2015). doi:10.1016/j.jqsrt.2015.01.023

    Google Scholar 

  38. M. von Edlinger, J. Scheuermann, R. Weih, C. Zimmermann, L. Nahle, M. Fischer, J. Koeth, S. Hofling, M. Kamp, IEEE Photon. Technol. Lett. (2014). doi:10.1109/LPT.2013.2297447

    Google Scholar 

  39. F. Eitel, J. Pareja, D. Geyer, A. Johchi, F. Michel, W. Elsäßer, A. Dreizler, Exp. Fluids (2015). doi:10.1007/s00348-015-2059-7

    Google Scholar 

  40. H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. (2003). doi:10.1364/AO.42.002043

    Google Scholar 

  41. L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.-M. Flaud, R.R. Gamache, J.J. Harrison, J.-M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V. Tyuterev, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. (2013). doi:10.1016/j.jqsrt.2013.07.002

    Google Scholar 

  42. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, J. Quant. Spectrosc. Radiat. Transf. (2010). doi:10.1016/j.jqsrt.2010.05.001

    Google Scholar 

  43. G.P. Merker, C. Schwarz, R. Teichmann, Grundlagen Verbrennungsmotoren (Vieweg + Teubner, Wiesbaden, 2012)

    Book  Google Scholar 

  44. M. Leins, L. Alberts, M. Kaiser, M. Walker, A. Schulz, U. Schumacher, U. Stroth, Plasma Process. Polym. (2009). doi:10.1002/ppap.200930604

    Google Scholar 

  45. K. Takita, N. Abe, G. Masuya, Y. Ju, Proc. Combust. Inst. (2007). doi:10.1016/j.proci.2006.07.108

    Google Scholar 

  46. Y. Tan, C.G. Fotache, C.K. Law, Combust. Flame (1999). doi:10.1016/S0010-2180(99)00064-4

    Google Scholar 

  47. C.R. Shaddix, in Proceedings of the 33rd National Heat Transfer Conference

  48. A. Singh, M. Mann, T. Kissel, J. Brübach, A. Dreizler, Flow Turbul. Combust. (2013). doi:10.1007/s10494-011-9384-6

    Google Scholar 

  49. P. Werle, R. Mücke, F. Slemr, Appl. Phys. B (1993). doi:10.1007/BF00425997

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support by the Fritz und Margot Faudi-Stiftung through Project No. 91. A. Dreizler is grateful for general support by the Gottfried Wilhelm Leibniz Program of the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Wagner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diemel, O., Pareja, J., Dreizler, A. et al. An interband cascade laser-based in situ absorption sensor for nitric oxide in combustion exhaust gases. Appl. Phys. B 123, 167 (2017). https://doi.org/10.1007/s00340-017-6741-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6741-8

Keywords

Navigation