Applied Physics B

, 123:147 | Cite as

Intracavity absorption spectroscopy of formaldehyde from 6230 to 6420 cm−1

  • Peter Fjodorow
  • Ortwin Hellmig
  • Valery M. Baev
  • Howard B. Levinsky
  • Anatoli V. Mokhov
Part of the following topical collections:
  1. Field Laser Applications in Industry and Research


We apply intracavity absorption spectroscopy for measurements of the absorption spectrum of formaldehyde, CH2O, from 6230 to 6420 cm−1, of which only a small fraction (6351–6362 cm−1) has been recorded elsewhere. The measurements are performed in the cavity of a broadband Er3+-doped fiber laser, with a sensitivity corresponding to the effective absorption path length of 45 m and a spectral resolution of 0.1 cm−1. The noise-equivalent detection limit of CH2O achieved with the strongest absorption line at 6252.64 cm−1 is estimated to be 5 ppm. High tolerance to broadband losses and the accessible time resolution of 50 µs make it possible to apply this detection system for time-resolved monitoring of CH2O together with other molecules in harsh combustion environments, e.g., in combustion engines.


CH2O Laser Cavity Ignition Delay Time Ignition Process Dope Fiber Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are thankful to H. Top and J. H. Marsman for their help in wet-chemical analysis and making formaldehyde.


  1. 1.
    D.I. Shin, T. Dreier, J. Wolfrum, Spatially resolved absolute concentration and fluorescence-lifetime determination of CH2O in atmospheric-pressure CH4/air flames. Appl. Phys. B 72(2), 257–261 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    J.E. Harrington, K.C. Smyth, Laser-induced fluorescence measurements of formaldehyde in a methane/air diffusion flame. Chem. Phys. Lett. 202(3–4), 196–202 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    A.J. Donkerbroek, A.P. van Vliet, L.M.T. Somers, P.J.M. Frijters, R.J.H. Klein-Douwel, N.J. Dam, W.L. Meerts, J.J. ter Meulen, Time- and space-resolved quantitative LIF measurements of formaldehyde in a heavy-duty diesel engine. Combust. Flame 157(1), 155–166 (2010)CrossRefGoogle Scholar
  4. 4.
    S. Wang, D.F. Davidson, R.K. Hanson, High-temperature laser absorption diagnostics for CH2O and CH3CHO and their application to shock tube kinetic studies. Combust. Flame 160(10), 1930–1938 (2013)CrossRefGoogle Scholar
  5. 5.
    A. Matsugi, H. Shiina, T. Oguchi, K. Takahashi, Time-resolved broadband cavity-enhanced absorption spectroscopy behind shock waves. J. Phys. Chem A 120(13), 2070–2077 (2016)CrossRefGoogle Scholar
  6. 6.
    P. Nau, J. Koppmann, A. Lackner, A. Brockhinke, Detection of formaldehyde in flames using UV and MIR absorption spectroscopy. Z. Phys. Chem. 229(4), 483–494 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Staak, E.W. Gash, D.S. Venables, A.A. Ruth, The rotationally-resolved absorption spectrum of formaldehyde from 6547 to 6804 cm−1. J. Mol. Spectrosc. 229(1), 115–121 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    W. Zhao, X. Gao, L. Deng, T. Huang, T. Wu, W. Zhang, Absorption spectroscopy of formaldehyde at 1.573 µm. J. Quant. Spectrosc. Radiat. Transf. 107(2), 331–339 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    V.M. Baev, T. Latz, P.E. Toschek, Laser intracavity absorption spectroscopy. Appl. Phys. B 69(3), 171–202 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    I. Rahinov, A. Goldman, S. Cheskis, Intracavity laser absorption spectroscopy and cavity ring-down spectroscopy in low-pressure flames. Appl. Phys. B 81(1), 143–149 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    J. Sierks, T. Latz, V.M. Baev, P.E. Toschek, Proceedings of the 1996 European Quantum Electronics Conference (EQEC’96), 8–13 September 1996, Hamburg, p. 100, QWB6Google Scholar
  12. 12.
    B. Löhden, S. Kuznetsova, K. Sengstock, V.M. Baev, A. Goldman, S. Cheskis, B. Pálsdóttir, Fiber laser intracavity absorption spectroscopy for in situ multicomponent gas analysis in the atmosphere and combustion environments. Appl. Phys. B 102(2), 331–344 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    F. Stoeckel, M.D. Schuh, N. Goldstein, G.H. Atkinson, Time-resolved intracavity laser spectroscopy: 266 nm photodissociation of acetaldehyde vapor to form HCO. Chem. Phys. 95(1), 135–144 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    P. Sheehy, J.I. Steinfeld, Discharge-flow kinetics measurements using intracavity laser absorption spectroscopy. J. Phys. Chem. B 109(17), 8358–8362 (2005)CrossRefGoogle Scholar
  15. 15.
    A. Fomin, T. Zavlev, I. Rahinov, S. Cheskis, A fiber laser intracavity absorption spectroscopy (FLICAS) sensor for simultaneous measurements of CO and CO2 concentrations and temperature. Sens. Actuators B 210, 431–438 (2015)CrossRefGoogle Scholar
  16. 16.
    P. Fjodorow, M. Fikri, C. Schulz, O. Hellmig, V.M. Baev, Time-resolved detection of temperature, concentration, and pressure in a shock tube by intracavity absorption spectroscopy. Appl. Phys. B 122, 159 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    P. Fjodorow, I. Baev, O. Hellmig, K. Sengstock, V.M. Baev, Sensitive, time-resolved, broadband spectroscopy of single transient processes. Appl. Phys. B 120(4), 667–673 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    J. Hünkemeier, R. Böhm, V.M. Baev, P.E. Toschek, Spectral dynamics of multimode Nd3+- and Yb3+-doped fibre lasers with intracavity absorption. Opt. Commun. 176(4–6), 417–428 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.-M. Flaud, R.R. Gamache, J.J. Harrison, J.-M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. LeRoy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    J.G. Boyles, S. Toby, The mechanism of the polymerization of gaseous formaldehyde. J. Polym. Sci. C 4(6), 411–415 (1966)Google Scholar
  21. 21.
    M. Day, J.D. Cooney, C. Touchette-Barrette, S.E. Sheehan, Pyrolysis of mixed plastics used in the electronics industry. J. Anal. Appl. Pyrolysis 52, 199–224 (1999)CrossRefGoogle Scholar
  22. 22.
    D.G. Goodwin, H.K. Moffat, R.L. Speth, (2015). Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Version 2.2.0 [Data set]. Zenodo.
  23. 23.
    G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, J.V.V. Lissanski, Z. Qin, n.d. GRI-MECH 3.0 [WWW Document].
  24. 24.
    A. Fomin, T. Zavlev, I. Rahinov, V.A. Alekseev, A.A. Konnov, V.M. Baev, S. Cheskis, Fiber laser intracavity spectroscopy of hot water for temperature and concentration measurements. Appl. Phys. B 121, 345–351 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Peter Fjodorow
    • 1
  • Ortwin Hellmig
    • 2
  • Valery M. Baev
    • 2
  • Howard B. Levinsky
    • 3
  • Anatoli V. Mokhov
    • 3
  1. 1.Institute for Combustion and Gas DynamicsUniversity of Duisburg-EssenDuisburgGermany
  2. 2.Institute of Laser PhysicsUniversity of HamburgHamburgGermany
  3. 3.Energy and Sustainability Research InstituteUniversity of GroningenGroningenThe Netherlands

Personalised recommendations