Skip to main content
Log in

Study on stimulated Raman scattering and up-conversion phenomenon in impure KGd(WO4)2 crystal

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In order to enhance the efficiency and the output average power of the synchronously pumped stimulated Raman scattering (SRS) system, we studied a picosecond pulse-train synchronously pumped SRS system experimentally. A compact KGd(WO4)2 (KGW) Raman cavity was synchronously pumped by high average power picosecond pulse-train laser. 1.22 W including eight-order Stokes Raman components were obtained and the maximum Raman conversion efficiency was 35.4% which was the highest efficiency for all-solid-state picosecond synchronously pumped SRS system to our best knowledge. And the “parasitical SRS process” under SRS process in synchronously pumping condition was observed for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.G. Zverev, J.T. Murray, R.C. Powell, R.J. Reeves, T.T. Basiev, Stimulated Raman scattering of picosecond pulses in barium nitrate crystals. Opt. Commun. 97, 59 (1993)

    Article  ADS  Google Scholar 

  2. P.G. Zverev, T.T. Basiev, A.M. Prokhorov, Stimulated Raman scattering of laser radiation in Raman crystals. Opt. Mater. 11, 335–352 (1999)

    Article  ADS  Google Scholar 

  3. W. Wei, X.Y. Zhang, Q.P. Wang, Theoretical and experimental study on intracavity pumped SrWO4 anti-Stokes Raman laser. Appl. Phys. B Lasers Opt. 116(3), 561–568 (2014)

    Article  ADS  Google Scholar 

  4. X. Li, Multiwavelength visible laser based on the stimulated Raman scattering effect and beta barium borate angle tuning. Chin. Opt. Lett. 14(2), 021404 (2016)

    Article  ADS  Google Scholar 

  5. J. Jakutis-Neto, J. Lin, N.U. Wetter, H. Pask, Continuous-wave watt-level Nd:YLF/KGW Raman laser operating at near-ir, yellow and lime-green wavelengths. Opt. Express 20(9), 9841–9850 (2012)

    Article  ADS  Google Scholar 

  6. J.T. Murray, W.L. Austin, R.C. Powell, Intracavity Raman conversion and Raman beam cleanup. Opt. Mater. 11, 353–371 (1999)

    Article  ADS  Google Scholar 

  7. J.D. Miller, M.N. Slipchenko, J.G. Mance, S. Roy, J.R. Gord, H.U. Stauffer, Burst-mode two-dimensional coherent anti-Stokes Raman scattering (2D-cars) at 1 khz, in Imaging and Applied Optics 2016, LW5G.5. (Optical Society of America, 2016)

  8. A. McKay, O. Kitzler, R.P. Mildren, Thermal lens evolution and compensation in a high power KGW Raman laser. Opt. Express 22(6), 6707–6718 (2014)

    Article  ADS  Google Scholar 

  9. D.K. Mohanty, V.K. Rai, Y. Dwivedi, S.B. Rai, Enhancement of up conversion intensity in Er3+ doped tellurite glass in presence of Yb3+. Appl. Phys. B 104(1), 233–236 (2011)

    Article  ADS  Google Scholar 

  10. K. Mishra, Y. Dwivedi, S.B. Rai, Observation of avalanche up conversion emission in Pr:Y2O3 nanocrystals on excitation with 532 nm radiation. Appl. Phys. B 106(1), 101–105 (2012)

    Article  ADS  Google Scholar 

  11. X.Q. Gao, M.L. Long, M. Chen, Compact KGd(WO4)2 picosecond pulse-train synchronously pumped broad-band Raman laser. Appl. Opt. 55, 6554–6558 (2016)

    Article  ADS  Google Scholar 

  12. D.J. Spence, E. Granados, H.M. Pask, R.P. Mildren. KGW and diamond picosecond visible Raman lasers, in Lasers, Sources and Related Photonic Devices (Optical Society of America, 2010), p. ATuA20

  13. I.V. Mochalov, Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd). Opt. Eng. 36(6), 1660–1669 (1997)

    Article  ADS  Google Scholar 

  14. T. Graf, J.E. Balmer, Lasing properties of diode-laser-pumped Nd:KGW. Opt. Eng. 34(8), 2349–2352 (1995)

    Article  ADS  Google Scholar 

  15. A.A. Kaminskii, P.V. Klevtsov, L. Li, A.A. Pavlyuk, Stimulated emission from KY(WO4)2: Nd3+ crystal laser. Phys. Status Solidi (a) 5(2), K79–K81 (1971)

    Article  ADS  Google Scholar 

  16. R.T. Mildren, M. Convery, H.M. Pask, J.A. Piper, Efficient, all-solid-state, Raman laser in yellow, orange and red. Opt. Express 12(5), 785–790 (2004)

    Article  ADS  Google Scholar 

  17. M.C. Pujol, M. Rico, C. Zaldo, R. Sole, V. Nikolov, X. Solans, M. Aguilo, F. Diaz, Crystalline structure and optical spectroscopy of Era+-doped KGd(WO4)2 single crystals. Appl. Phys. B 68(2), 187–197 (1999)

    Article  ADS  Google Scholar 

  18. W.A. Pisarski, J. Pisarska, R. Lisiecki, Ł. Grobelny, G. Dominiak-Dzik, W. Ryba-Romanowski, Luminescence spectroscopy of rare earth-doped oxychloride lead borate glasses. J. Lumin. 131(4), 649–652 (2011)

    Article  Google Scholar 

  19. Xu Wei, Zhiguo Zhang, Wenwu Cao, Excellent optical thermometry based on short-wavelength upconversion emissions in Era+/Yb3+ codoped CAWO4. Opt. Lett. 37(23), 4865–4867 (2012)

    Article  ADS  Google Scholar 

  20. B.I. Denker, B.I. Galagan, S.E. Sverchkov, Up conversion losses in different erbium-doped laser glasses. Appl. Phys. B 120(2), 367–372 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Chen, M. Study on stimulated Raman scattering and up-conversion phenomenon in impure KGd(WO4)2 crystal. Appl. Phys. B 123, 133 (2017). https://doi.org/10.1007/s00340-017-6710-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6710-2

Keywords

Navigation