Advertisement

Applied Physics B

, 123:113 | Cite as

Shared optical parametric generation interactions in square lattice nonlinear photonic crystals

  • H. Chikh-TouamiEmail author
  • R. Kremer
  • H.-J. Lee
  • M. W. Lee
  • L.-H. Peng
  • A. Boudrioua
Article
  • 153 Downloads

Abstract

In this work, we investigated common optical parametric generation (OPG) with a 532-nm beam pumped along the x-axis of a square lattice two-dimensional periodically poled lithium tantalate (2D-PPLT). Twin-beam generation are observed with either the signal or the idler beams propagating collinearly to the pump beam due to participation of reciprocal lattice vectors (RLV) of \(\mathbf K _{1,\pm 1}\). With both of the signal and the idler beams generated non-collinearly to the pump beam, multi-wavelength dual-beam generation are also observed due to contribution from \(\mathbf K _{1,0}\) and \(\mathbf K _{1,\pm 1}\). Because of mirror symmetry in the domain patterns/structures of the 2D-PPLT, all the OPG processes are doubled with the generated waves spectrally degenerated and spatially separated. By analyzing the spectral and angular distribution of the OPG beams, we confirm that the angular crossing of the \(\mathbf {K_{m,n}}\)-assisted quasi-phase matching (QPM) spectral tuning curves result in a shared signal or idler wave configuration which leads to intensity enhancement in these parametric beams.

Keywords

Pump Beam Signal Beam Reciprocal Lattice Vector Lithium Tantalate Output Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank very much Mr. Billeton Thierry for the assistance in preparing the experiments. They also acknowledge the support of MOST 104-2221-E-002-071-MY3.

References

  1. 1.
    Martin Levenius, Valdas Pasiskevicius, Katia Gallo, Appl. Phys. Lett. 101, 121114 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    H.-C. Liu, A.H. Kung, Opt. Exp. 16(13), 9714–9725 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    W.K. Chang, Y.H. Chen, H.H. Chang, J.W. Chang, C.Y. Chen, Y.Y. Lin, Y.C. Huang, S.T. Lin, Opt. Exp. 19(24), 23654–23651 (2008)Google Scholar
  4. 4.
    L.-H. Peng, C.-C. Hsu, J. Ng, A. H. Kung, Appl. Phys. Letters 84, 3250 (2004)Google Scholar
  5. 5.
    J.-P. Meyn, M.M. Fejer, Opt. Lett. 22(16), 1214–1216 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    Y.-X. Gong, P. Xu, J. Shi, L. Chen, X. Q. Yu, P. Xue, S.N. Zhu, Opt. Lett. 37(21), 4374–4376 (2012)Google Scholar
  7. 7.
    M. Lazoul, A. Boudrioua, L.M. Simohamed, A. Fischer, L.-H. Peng, Opt. Lett. 38(19), 3892–3894 (2013)Google Scholar
  8. 8.
    M. Lazoul, A. Boudrioua, L.M. Simohamed, A. Fischer, L.H. Peng, Opt. Lett. 40(8), 1861–1864 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    M. Conforti, F. Baronio, M. Levenius, K. Gallo, Opt. Lett. 39(12), 3457–3460 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    H. Cankaya, A.-L. Calendron, H. Suchowski, F.X. Kärtner, Opt. Lett. 39(10), 2912–2915 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    L. Chen, P. Xu, Y.F. Bai, X.W. Luo, M.L. Zhong, M. Dai, M.H. Lu, S.N. Zhu, Opt. Exp. 22(11), 13164–13169 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    V. Berger, Phys. Rev. Lett. 81, 4136 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    A. Arie, N. Habshoosh, A. Bahabad, Opt. Quant Electron 39, 361–375 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, CNRS(UMR7538)VilletaneuseFrance
  2. 2.Ecole Militaire Polytechnique, UER Electronique, Laboratoire des Systèmes Electroniques et OptroniquesAlgiersAlgeria
  3. 3.Université de Lorraine, Laboratoire Matériaux Optiques, Photoniques et SystèmesMetzFrance
  4. 4.Graduate Institute of Photonics and Optoelectronics and Department of Electrical EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations