Skip to main content
Log in

Numerical model for predicting experimental effects in enantioselective Raman spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Chiroptical methods facilitating enantioselective quantitative measurements with good temporal and spatial resolution are highly desirable for process monitoring, e.g., during the production of pharmaceuticals. The recently proposed enantioselective Raman (esR) spectroscopy has a great potential in this respect. The a priori knowledge of how the settings of the experimental parameters will affect the measurement is crucial to avoid systematic errors and to build an optimized setup. This work presents a ray tracing-based model for the simulation of light scattering experiments and uses it to investigate the effects of experimental parameters in esR spectroscopy. The main advancement to the previous work is that the model is implemented in 3D and takes a large variety of effects into account. The laser beam is considered as a Gaussian beam. The light scattered from the different volume elements illuminated by the laser is traced through the optical components of the signal collection system. The results indicate that the enantioselective characteristics of the method that were proposed for 1D are still valid in a 3D geometry. The contrast and sharpness in the polarization-resolved intensity distributions are moderately reduced compared to the idealized case. This is very promising for the practical application of the esR technique. The results confirm that it can be applied for a broad range of settings and substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Declerck, Y.V. Heyden, D. Mangelings, J. Pharm. Biomed. Anal. 130, 81–99 (2016)

    Article  Google Scholar 

  2. J.R. Cossy, The importance of chirality in drugs and agrochemicals. in Comprehensive Chirality (Elsevier, Amsterdam, 2012), pp. 1–7

    Chapter  Google Scholar 

  3. E. Francotte, W. Lindner, R. Mannhold, H. Kubinyi, G. Folkers, Chirality in drug research. in Methods and principles in medicinal chemistry (Wiley, Hoboken, 2007)

    Google Scholar 

  4. H. Noguchi, M. Takafuji, V. Maurizot, I. Huc, H. Ihara, J. Chromatogr. A 1437, 88–94 (2016)

    Article  Google Scholar 

  5. T. Eriksson, S. Bjorkman, B. Roth, P. Hoglund, J. Pharm. Pharmacol. 52, 807–817 (2000)

    Article  Google Scholar 

  6. C.P. Miller, J.W. Ullrich, Chirality 20, 762–770 (2008)

    Article  Google Scholar 

  7. H.-J. Federsel, Chirality 15, 128–142 (2003)

    Article  Google Scholar 

  8. Y. Qi, D. Liu, W. Zhao, C. Liu, Z. Zhou, P. Wang, Pestic. Biochem. Physiol. 125, 38–44 (2015)

    Article  Google Scholar 

  9. D. Nasipuri, Stereochemistry of organic compounds: principles and applications (Wiley, Hoboken, 1994)

    Google Scholar 

  10. D. Parker, Chem. Rev. 91, 1441–1457 (1991)

    Article  Google Scholar 

  11. P.J. Stephens, F.J. Devlin, J.J. Pan, Chirality 20, 643–663 (2008)

    Article  Google Scholar 

  12. L.A. Nafie, B.E. Brinson, X.L. Cao, D.A. Rice, O.M. Rahim, R.K. Dukor, N.J. Halas, Appl. Spectrosc. 61, 1103–1106 (2007)

    Article  ADS  Google Scholar 

  13. L.D. Barron, L. Hecht, E.W. Blanch, A.F. Bell, Prog. Biophys. Mol. Biol. 73, 1–49 (2000)

    Article  Google Scholar 

  14. L.D. Barron, A.D. Buckingham, Chem. Phys. Lett. 492, 199–213 (2010)

    Article  ADS  Google Scholar 

  15. D. Sofikitis, L. Bougas, G.E. Katsoprinakis, A.K. Spiliotis, B. Loppinet, T.P. Rakitzis, Nature 514, 76–79 (2014)

    Article  ADS  Google Scholar 

  16. Y. Wang, Z. Yu, W. Ji, Y. Tanaka, H. Sui, B. Zhao, Y. Ozaki, Angew. Chem. Int. Ed 53, 13866–13870 (2014)

    Article  Google Scholar 

  17. D. Patterson, M. Schnell, J.M. Doyle, Nature 497, 475 (2013)

    Article  ADS  Google Scholar 

  18. J. Kiefer, K. Noack, Analyst 140, 1787–1790 (2015)

    Article  ADS  Google Scholar 

  19. J. Kiefer, M. Kaspereit, Anal. Methods 5, 797–800 (2013)

    Article  Google Scholar 

  20. J. Kiefer, Analyst 140, 5012–5018 (2015)

    Article  ADS  Google Scholar 

  21. J. Eichler, H.J. Eichler, Laser, 4th edn. (Springer, Berlin, 2002)

    Book  Google Scholar 

  22. J. Kiefer, Energies 8, 3165–3197 (2015)

    Article  Google Scholar 

  23. C. Eckbreth, Laser diagnostics for combustion temperature and species, 2nd edn. (Gordon and Breach, Amsterdam, 1996)

    Google Scholar 

  24. R.E. Hopkins, Fundamental methods of ray tracing. in Military standardization handbook: optical design (US Defence Supply Agency, Washington, 1962)

    Google Scholar 

  25. M. Avendaño-Alejo, O.N. Stavroudis, A.R.B. Goitia, J. Opt. Soc. Am. A 19, 1668–1673 (2002)

    Article  ADS  Google Scholar 

  26. M. Avendaño-Alejo, O.N. Stavroudis, J. Opt. Soc. Am. A 19, 1674–1679 (2002)

    Article  ADS  Google Scholar 

  27. D. Brendel, D.A. Skoog, S. Hoffstetter-Kuhn, J.J. Leary, Instrumentelle Analytik: Grundlagen – Geräte - Anwendungen. (Springer, Berlin Heidelberg, 2013)

    Google Scholar 

  28. P. Williamson, J. Kiefer, Opt. Commun. 372, 98–105 (2016)

    Article  ADS  Google Scholar 

  29. D.J. Gardiner, H.J. Bowley, P.R. Graves, D.L. Gerrard, J.D. Louden, G. Turrell, Practical Raman spectroscopy (Springer, Berlin, 2012)

    Google Scholar 

Download references

Acknowledgements

The model implemented as Matlab code is available online as supplementary material. It is free to use and we would like to ask the users that they reference the present work when publishing results obtained with the code. The authors gratefully acknowledge funding of this work by Deutsche Forschungsgemeinschaft (DFG) through Grant KI1396/4-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Kiefer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (M 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jüngst, N., Williamson, A.P. & Kiefer, J. Numerical model for predicting experimental effects in enantioselective Raman spectroscopy. Appl. Phys. B 123, 128 (2017). https://doi.org/10.1007/s00340-017-6685-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6685-z

Keywords

Navigation