Quantitative effects of rapid heating on soot-particle sizing through analysis of two-pulse LII


During the rapid laser pulse heating and consecutive cooling in laser-induced incandescence (LII), soot particles may undergo thermal annealing and sublimation processes which lead to a permanent change in its optical properties and its primary particle size, respectively. Overall, effects of these two processes on soot and LII model-based particle sizing are investigated by measuring the two-color time-resolved (2C-TiRe) LII signal decay from in-flame soot after two consecutive laser pulses at 1064-nm wavelength. Experiments are carried out on a non-premixed laminar ethylene/air flame from a Santoro burner with both low and moderate laser fluences suitable for particle sizing. The probe volume is set to a radial position close to the flame axis where the soot particles are known to be immature or less graphitic. With the first pulse, soot is pre-heated, and the LII signal after the consecutive second pulse is used for analysis. The two-color incandescence emission technique is used for the pyrometric determination of the LII-heated peak soot temperature at the second pulse. A new LII simulation tool is developed which accounts for particle heating via absorption and annealing, and cooling via sublimation, conduction, and radiation with various existing sub-models from the literature. The same approach of using two laser pulses is implemented in the simulations. Measurements indicate that thermal annealing and associated absorption enhancement becomes important at laser fluences above 0.17 J/cm2 for the immature in-flame soot. After a heating pulse at 0.33 J/cm2, the increase of the soot absorption function is calculated as 35% using the temperature measured at the second pulse and an absorption model based on the Rayleigh approximation. Present annealing model, on the other hand, predicts graphitization of soot even in the absence of laser heating at typical flame temperatures. Recorded experimental LII signal decays and LII-heated peak soot temperature information are used for particle sizing with the LII modeling to assess the effects of sublimation. A reduction in particle size due to sublimation starts at a laser fluence of 0.1 J/cm2 for the in-flame soot. After a heating pulse at 0.33 J/cm2, the particle loses 55% of its initial mass.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    L.A. Melton, Appl. Opt. 23, 2201–2208 (1984)

    ADS  Article  Google Scholar 

  2. 2.

    C. Schulz, B.F. Kock, M. Hofmann, H.A. Michelsen, S. Will, B. Bougie, R. Suntz, G.J. Smallwood, Appl. Phys. B 83, 333–354 (2006)

    ADS  Article  Google Scholar 

  3. 3.

    R.L. Vander Wal, M.Y. Choi, K.O. Lee, Combust. Flame 102, 200–204 (1995)

    Article  Google Scholar 

  4. 4.

    R.L. Vander Wal, K.A. Jensen, Appl. Opt. 37, 1607–1616 (1998)

    ADS  Article  Google Scholar 

  5. 5.

    R.L. Vander Wal, M.Y. Choi, Carbon 37, 231–239 (1999)

    Article  Google Scholar 

  6. 6.

    S. De Iuliis, F. Cignoli, S. Maffi, G. Zizak, Appl. Phys. B 104, 321–330 (2011)

    ADS  Article  Google Scholar 

  7. 7.

    H.A. Michelsen, A.V. Tivanski, M.K. Gilles, L.H. van Poppel, M.A. Dansson, P.R. Buseck, Appl. Opt. 46, 959–977 (2007)

    ADS  Article  Google Scholar 

  8. 8.

    R.P. Bambha, M.A. Dansson, P.E. Schrader, H.A. Michelsen, Appl. Phys. B 112, 343–358 (2013)

    ADS  Article  Google Scholar 

  9. 9.

    R.L. Vander Wal, T.M. Ticich, A.B. Stephens, Appl. Phys. B 67, 115–123 (1998)

    ADS  Article  Google Scholar 

  10. 10.

    M. Saffaripour, K.-P. Geigle, D.R. Snelling, G.J. Smallwood, K.A. Thomson, Appl. Phys. B 119, 621–642 (2015)

    Article  Google Scholar 

  11. 11.

    H.A. Michelsen, J. Chem. Phys. 118, 7012–7045 (2003)

    ADS  Article  Google Scholar 

  12. 12.

    X. López-Yglesias, P.E. Schrader, H.A. Michelsen, J. Aerosol. Sci. 75, 43–64 (2014)

    Article  Google Scholar 

  13. 13.

    R.J. Santoro, H.G. Semerjian, R.A. Dobbins, Combust. Flame 51, 203–218 (1983)

    Article  Google Scholar 

  14. 14.

    E. Cenker, G. Bruneaux, T. Dreier, C. Schulz, Appl. Phys. B 118, 169–183 (2015)

    ADS  Article  Google Scholar 

  15. 15.

    R.J. Santoro, T.T. Yeh, J.J. Horvath, H.G. Semerjian, Combust. Sci. Technol. 53, 89–115 (1987)

    Article  Google Scholar 

  16. 16.

    F. Liu, D.R. Snelling, K.A. Thomson, G.J. Smallwood, Appl. Phys. B 96, 623–636 (2009)

    ADS  Article  Google Scholar 

  17. 17.

    E. Cenker, K. Kondo, G. Bruneaux, T. Dreier, T. Aizawa, C. Schulz, Appl. Phys. B 119, 765–776 (2015)

    Article  Google Scholar 

  18. 18.

    B.C. Connelly, Quantitative characterization of steady and time-varying, sooting, laminar diffusion flames using optical techniques (Doctoral dissertation), PhD thesis, Yale University (2009)

  19. 19.

    D.R. Snelling, F. Liu, G.J. Smallwood, Ö. L. Gülder, Combust. Flame 136, 180–190 (2004)

    Article  Google Scholar 

  20. 20.

    P.B. Kuhn, B. Ma, B.C. Connelly, M.D. Smooke, M.B Long, Proc. Combust. Inst. 33, 743–750 (2011)

    Article  Google Scholar 

  21. 21.

    H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann et al., Appl. Phys. B 87, 503–521 (2007)

    ADS  Article  Google Scholar 

  22. 22.

    M. Hofmann, B.F. Kock, T. Dreier, H. Jander, C. Schulz, Appl. Phys. B 90, 629–639 (2007)

    ADS  Article  Google Scholar 

  23. 23.

    A.V. Filippov, D.E. Rosner, Int. J. Heat Mass Transf. 43, 127–138 (2000)

    Article  Google Scholar 

  24. 24.

    J.M. Mitrani, M.N. Shneider, B.C. Stratton, Y. Raitses, Appl. Phys. Lett. 108, 54101 (2016)

    ADS  Article  Google Scholar 

  25. 25.

    J. Johnsson, H. Bladh, N.-E. Olofsson, P.-E. Bengtsson, Appl. Phys. B 112, 321–332 (2013)

    ADS  Article  Google Scholar 

  26. 26.

    L.J. Dunne, P.F. Nolan, J. Munn, M. Terrones, T. Jones, P. Kathirgamanathan, J. Fernandez, A.D. Hudson, J. Phys. Condens. Matter 9, 10661–10673 (1997)

    ADS  Article  Google Scholar 

  27. 27.

    W.S. Bacsa, W.A. de Heer, D. Ugarte, A. Châtelain, Chem. Phys. Lett. 211, 346–352 (1993)

    ADS  Article  Google Scholar 

  28. 28.

    F. Liu, B.J. Stagg, D.R. Snelling, G.J. Smallwood, Int. J. Heat Mass Transf. 49, 777–788 (2006)

    Article  Google Scholar 

Download references


The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST).

Author information



Corresponding author

Correspondence to E. Cenker.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cenker, E., Roberts, W.L. Quantitative effects of rapid heating on soot-particle sizing through analysis of two-pulse LII. Appl. Phys. B 123, 74 (2017). https://doi.org/10.1007/s00340-017-6653-7

Download citation


  • Pump Pulse
  • Soot Particle
  • Probe Pulse
  • Flame Temperature
  • Soot Volume Fraction