Skip to main content
Log in

Upconversion photon quantification of holmium and erbium ions in waveguide-adaptive germanate glasses

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Visible upconversion photons have been quantified precisely in Ho3+/Yb3+ and Er3+/Yb3+ doped waveguide-adaptive aluminum germanate (NMAG) glasses, and effective red and green upconversion emissions generated from Ho3+ and Er3+ were illustrated in contrast. The emission photon numbers are identified as a positive correlation with the laser power densities, and stronger dominance of red emission in the Ho3+/Yb3+ doped NMAG glasses and more effectiveness of photon generation in Er3+/Yb3+ doped case were proved. When the power density is 1227 W/cm2, the absolute quantum yields for red and green (660 and 548 nm) upconversion fluorescences are derived to be 2.41 × 10−5 and 0.17 × 10−5 in Ho3+/Yb3+ doped NMAG glasses, and the ones (665 and 548 nm) in Er3+/Yb3+ doped NMAG glasses are 4.26 × 10−5 and 1.44 × 10−5. The macroscopic quantization of red and green upconversion emissions in Ho3+/Yb3+ and Er3+/Yb3+ doped waveguide-adaptive NMAG glasses provides the original referenced data for developing upconversion waveguide-typed irradiation light sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Song, J.V. Dyke, I.K. Lum, B.D. White, S. Jang, D. Yazici, L. Shu, A. Schneidewind, P. Čermák, Y. Qiu, M.B. Maple, D.K. Morr, P.C. Dai, Robust upward dispersion of the neutron spin resonance in the heavy fermion superconductor Ce1–xYbxCoIn5. Nat. Commun (2016)

  2. K. Pavani, J. Suresh Kumar, T. Sasikala, B.C. Jamalaiah, H.J. Seo, L. Rama Moorthy, Luminescent characteristics of Dy3+ doped strontium magnesium aluminate phosphor for white LEDs. Mater. Chem. Phys 129(1–2), 292–295 (2011)

    Article  Google Scholar 

  3. A. Pandey, V. Kumar, R.E. Kroona, H.C. Swart, Temperature induced upconversion behaviour of Ho3+-Yb3+ codoped yttrium oxide films prepared by pulsed laser deposition. J. Alloy. Compd 672, 190–196 (2016)

    Article  Google Scholar 

  4. M.E. Camilo, T.A.A. Assumpcao, D.M.D. Silva, D.S.D. Silva, Influence of silver nanoparticles on the infrared-to-visible frequency upconversion in Tm3+/Er3+/Yb3+ doped GeO2-PbO glass. J. Appl. Phys 113(15), 153507 (2013)

    Article  ADS  Google Scholar 

  5. H. Canogarcia, P. Kosmas, I. Sotiriou, I. Papadopouloskelidis, C. Parini, I. Ioannis Gouzouasis, G. Palikaras, E. Kallos, Detection of glucose variability in saline solutions from transmission and reflection measurements using V-band waveguides. Meas. Sci. Technol 26, 125701–125710 (2015)

    Article  ADS  Google Scholar 

  6. W. Fan, W. Bu, J. Shi, On the latest three-stage development of nanomedicines based on upconversion nanoparticles. Adv. Mater 28(21), 3987–4011 (2016)

    Article  Google Scholar 

  7. Q.Y. Shao, X.S. Li, P.Y. Hua, G.T. Zhang, Y. Dong, J.Q. Jiang, Enhancing the upconversion luminescence and photothermal conversion properties of ∼800 nm excitable core/shell nanoparticles by dye molecule sensitization. J. Colloid Interf. Sci 486, 121–127 (2016)

    Article  Google Scholar 

  8. S.D. Jackson, Towards high-power mid-infrared emission from a fibre laser. Nat. Photonics 6(7), 423–431 (2012)

    Article  ADS  Google Scholar 

  9. J. Zmojda, M. Kochanowicz, P. Miluski, G.C. Righini, M. Ferrari, D. Dorosz, Investigation of upconversion luminescence in Yb3+/Tm3+/Ho3+ triply doped antimony-germanate glass and double-clad optical fiber. Opt. Mater 58, 279–284 (2016)

    Article  ADS  Google Scholar 

  10. A.A. Ansari, R. Yadav, S.B. Rai, Influence of surface coating on structural, morphological and optical properties of upconversion-luminescent LaF3: Yb/Er nanoparticles. Appl. Phys. A 122(7), 1–7 (2016)

    Article  Google Scholar 

  11. A.J.M. Salesa, D.G. Sousaa, H.O. Rodrigues, M.M. Costa, A.S.B. Sombra, F.N.A. Freire, M.J. Soares, M.P.F. Graça, J. Suresh Kumar, Power dependent upconversion in Er3+/Yb3+ co-doped BiNbO4 phosphors. Ceram. Int. 42(6), 6899–6950 (2016)

    Article  Google Scholar 

  12. A.V. Kachynski, A. Pliss, A.N. Kuzmin, T.Y. Ohulchanskyy, A. Baev, J. Qu, P.N. Prasad, Photodynamic therapy by in situ nonlinear photon conversion. Nat. Photonics 8(6), 455–461 (2014)

    Article  ADS  Google Scholar 

  13. P.A. Loiko, N.M. Khaidukov, J. Méndez-Ramos, E.V. Vilejshikova, N.A. Skoptsov, K.V. Yumashev, Up- and down-conversion emissions from Er3+ doped K2YF5 and K2YbF5 crystals. J. Lumin 170, 1–7 (2016)

    Article  Google Scholar 

  14. K. Dong, Z. Liu, Z.H. Li, J.S. Ren, X.G. Qu, Hydrophobic anticancer drug delivery by a 980 nm laser-driven photothermal vehicle for efficient synergistic therapy of cancer cells in vivo. Adv. Mater 25(32), 4452–4458 (2013)

    Article  Google Scholar 

  15. G. Sansone, L. Poletto, M. Nisoli, High-energy attosecond light sources. Nat. Photonics 5(11), 655–663 (2011)

    Article  ADS  Google Scholar 

  16. J.C. Yu, D.W. Kim, D.B. Kim, E.D. Jung, J.H. Park, A. Lee, B.R. Lee, D.D. Nuzzo, R.H. Friend, M.H. Song, Improving the stability and performance of perovskite light-emitting diodes by thermal annealing treatment. Adv. Mater 28(32), 6906–6913 (2016)

    Article  Google Scholar 

  17. M. Khurana, H.A. Collins, A. Karotki, H.L. Anderson, D.T. Cramb, B.C. Wilson, Quantitative in vitro demonstration of two-photon photodynamic therapy using photofrin and visudyne. Photochem. Photobiol 83(6), 1441–1448 (2007)

    Article  Google Scholar 

  18. A. Pandey, V.K. Rai, Optical thermometry using FIR of two close lying levels of different ions in Y2O3: Ho3+-Tm3+-Yb3+ phosphor. Appl. Phys. B 113(2), 221–225 (2013)

    Article  ADS  Google Scholar 

  19. B. Zhou, T. Wei, M.Z. Cai, Y. Tian, J.J. Zhou, D.G. Deng, S.Q. Xu, J.J. Zhang, Analysis on energy transfer process of Ho3+ doped fluoroaluminate glass sensitized by Yb3+ for mid-infrared 2.85 µm emission. J. Quant. Spectrosc. Ra. 149, 41–50 (2014)

    Article  ADS  Google Scholar 

  20. V. Lojpur, L. Mancic, P. Vulic, M.D. Dramicanin, M.E. Rabanal, O. Milosevic, Structural, morphological and up-converting luminescence characteristics of nanocrystalline Y2O3: Yb/Er powders obtained via spray pyrolysis. Ceram. Int. 40(2), 3089–3095 (2014)

    Article  Google Scholar 

  21. L. Mancic, V. Lojpur, B.A. Marinkovic, M.H. de Pinho Mauricio, M.D. Dramicanin, O. Milosevic, Effect of processing parameters on structural, morphological and optical Y2O3: Yb3+/Ho3+ powders characteristics. Adv. Powder Technol 25(5), 1449–1454 (2014)

    Article  Google Scholar 

  22. D. Kasprowicz, P. Głuchowski, M.G. Brik, M.M. Makowski, M. Chrunik, A. Majchrowski, Visible and near-infrared up-conversion luminescence of KGd(WO4)2 micro-crystals doped with Er3+, Tm3+, Ho3+, and Yb3+, ions. J. Alloy. Compd 684, 271–281 (2016)

    Article  Google Scholar 

  23. P. Babilas, E. Kohl, T. Maisch, H. Bäcker, B. Gross, A.L. Branzan, W. Bäumler, M. Landthaler, S. Karrer, R.M. Szeimies, In vitro and in vivo comparison of two different light sources for topical photodynamic therapy. Br. J. Dermatol 154(4), 712–718 (2006)

    Google Scholar 

  24. A.A.D. Adikaari, I. Etchart, P.H. Guéring, M. Bérard, S.R.P. Silva, A.K. Cheetham, R.J. Curry, Near infrared up-conversion in organic photovoltaic devices using an efficient Yb3+: Ho3+ co-doped Ln2BaZnO5 (Ln = Y, Gd) phosphor. J. Appl. Phys 111(9), 094502 (2012)

    Article  ADS  Google Scholar 

  25. J.J. Leal, R. Narro-García, H. Desirena, E. Rodríguez, K. Linganna, E. De la Rosa, Spectroscopic properties of tellurite glasses co-doped with Er3+ and Yb3+. J. Lumin 162, 72–80 (2015)

    Article  Google Scholar 

  26. R. Adhikari, G. Gyawali, S.H. Cho, R. Narro-García, T.S.W. Lee, Er3+/Yb3+ co-doped bismuth molybdate nanosheets upconversion photocatalyst with enhanced photocatalytic activity. J. Solid State Chem 209(2), 74–81 (2014)

    Article  ADS  Google Scholar 

  27. H.P. Xia, J.H. Feng, Y.X. Ji, Y.J. Sun, Y. Wang, Z.T. Jia, C.Y. Tu, 2.7 μm emission properties of Er3+/Yb3+/Eu3+: SrGdGa3O7 and Er3+/Yb3+/Ho3+: SrGdGa3O7 crystals. J. Quant. Spectrosc. Ra. 173, 7–12 (2016)

    Article  ADS  Google Scholar 

  28. X. Liu, B.J. Chen, E.Y.B. Pun, H. Lin, White upconversion luminescence in Tm3+/Ho3+/Yb3+, triply doped K+-Na+ ion-exchanged aluminum germanate glass channel waveguide. Opt. Mater 35, 590–595 (2013)

    Article  ADS  Google Scholar 

  29. A. Amarnath Reddy, S. Surendra Babu, G. Vijaya Prakash, Er3+-doped phosphate glasses with improved gain characteristics for broadband optical amplifiers. Opt. Commun 285, 5364–5367 (2012)

    Article  ADS  Google Scholar 

  30. T. Toney Fernandez, M. Hernandez, B. Sotillo, S.M. Eaton, G. Jose, R. Osellame, A. Jha, P. Fernandez, J. Solis, Role of ion migrations in ultrafast laser written tellurite glass waveguides. Opt. Express 22, 15298–15304 (2014)

    Article  ADS  Google Scholar 

  31. M.S. Sajna, S. Thomas, K.A. Ann Mary, C. Joseph, P.R. Biju, N.V. Unnikrishnan, Spectroscopic properties of Er3+ ions in multicomponent tellurite glasses. J. Lumin 159, 55–65 (2015)

    Article  Google Scholar 

  32. V.A.G. Rivera, S.P.A. Osorio, D. Manzani, Y. Messaddeq, L.A.O. Nunes, E. Marega Jr., Growth of silver nano-particle embedded in tellurite glass: interaction between localized surface plasmon resonance and Er3+ ions. Opt. Mater 33, 888–892 (2011)

    Article  ADS  Google Scholar 

  33. R. Stepien, D. Pysz, I. Kujawa, R. Buczynski, Development of silicate and germanate glasses based on lead, bismuth and gallium oxides for midIR microstructured fibers and microoptical elements. Opt. Mater 35(8), 1587–1594 (2013)

    Article  ADS  Google Scholar 

  34. A.I. Chernov, B.I. Denker, R.P. Ermakov, B.I. Galagan, L.D. Iskhakova, S.E. Sverchkov, V.V. Velmiskin, E.M. Dianov, Synthesis and photoluminescent properties of SnO-containing germanate and germanosilicate glasses. Appl. Phys. B 122(9), 243 (2016)

    Article  ADS  Google Scholar 

  35. B.T. Dickey, S. Kehoe, D. Boyd, Novel adaptations to zinc-silicate glass polyalkenoate cements: the unexpected influences of germanium based glasses on handling characteristics and mechanical properties. J. Mech. Behav. Biomed. 23, 8–21 (2013)

    Article  Google Scholar 

  36. C.M. Pierlot, L. Kiri, D. Boyd, Effect of Ge/Si ratio on genotoxicity of germanium-containing glass ionomer cements. Mater. Lett 168, 151–154 (2016)

    Article  Google Scholar 

  37. M.K. Murthy, I.P.J. Amp, Some physical properties of alkali germanate glasses. Nature 201, 285–286 (1964)

    Article  ADS  Google Scholar 

  38. M.A. Hughes, Z. Suzuki, Y. Ohishi, Compositional dependence of the optical properties of bismuth doped lead-aluminum-germanate glass. Opt. Mater 32(9), 1028–1034 (2010)

    Article  ADS  Google Scholar 

  39. M. Kochanowicz, D. Dorosz, J. Zmojda, P. Miluski, J. Dorosz, Effect of temperature on upconversion luminescence in Yb3+/Tb3+ co-doped germanate glass. Acta Phys. Pol. A 124(3), 471–473 (2013)

    Article  Google Scholar 

  40. M. Kochanowicz, D. Dorosz, J. Zmojda, J. Dorosz, J. Pisarska, W.A. Pisarski, Up-conversion luminescence of Tb3+ ions in germanate glasses under diode-laser excitation of Yb3+. Opt. Mater. Express 4(5), 1050–1056 (2014)

    Article  Google Scholar 

  41. K. Godo, K. Niwa, K. Kinoshita, Y. Ichino, T. Zama, Realization of total spectral radiant flux scale at NMIJ with a goniophotometer/spectroradiometer. Metrologia 53(2), 853 (2016)

    Article  ADS  Google Scholar 

  42. N. Bai, E. Ip, Y.K. Huang, E. Mateo, F. Yaman, M.J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K.M. Chung, A.P.T. Lau, H.Y. Tam, C. Lu, Y.H. Luo, G.D. Peng, G.F. Li, T. Wang, Mode-division multiplexed transmission with inline few-mode fiber amplifier. Opt. Express 20(3), 2668–2680 (2012)

    Article  ADS  Google Scholar 

  43. K. Chiang, Q. Liu, K.P. Lor, Refractive-index profiling of buried planar waveguides by an inverse Wentzel–Kramer–Brillouin method. J. Lightwave. Technol. 26, 1367–1373 (2008)

    Article  ADS  Google Scholar 

  44. S.I. Najafi, Optical behavior of potassium ion-exchanged glass waveguides. Appl. Opt. 27, 3728–3731 (1988)

    Article  ADS  Google Scholar 

  45. F. Wang, B.J. Chen, E.Y.B. Pun, H. Lin, Alkaline aluminum phosphate glasses for thermal ion-exchanged optical waveguide. Opt. Mater 42, 484–490 (2015)

    Article  ADS  Google Scholar 

  46. L.E. Gortych, D.G. Hall, Fabrication of planar optical waveguides by K+-ion exchange in BK7 and pyrex glass. J. Quantum Electron. QE-22, 892 (1986)

  47. H.Y. Li, L.F. Shen, E.Y.B. Pun, H. Lin, Dy3+-doped germinate glasses for waveguide-type radiation light sources. J. Alloy. Compd 64, 586–591 (2015)

    Article  Google Scholar 

  48. C. Joshi, R.N. Rai, S.B. Rai, Structural, thermal, and optical properties of Er3+/Yb3+ co-doped oxyhalide tellurite glasses, glass-ceramics and ceramics. J. Quant. Spectrosc. Ra. 113(6), 397–404 (2012)

    Article  ADS  Google Scholar 

  49. F.X. Wang, F. Song, S.X. An, W.S. Wan, H. Guo, S.J. Liu, J.G. Tian, Er3+/Yb3+-codoped phosphate glass for short-length high-gain fiber lasers and amplifiers. Appl. Optics 54, 1198–1205 (2015)

    Article  ADS  Google Scholar 

  50. J.L. Zhuang, B.F. Lei, H.R. Zhang, Y.L. Liu, A facile route to the synthesis of sub-5nm monodispersed cubic NaYF4: Yb3+/Er3+ nanocrystals. Mater. Lett 178, 260–263 (2016)

    Article  Google Scholar 

  51. M.S. Figueiredo, F.A. Santos, K. Yukimitu, J.C.S. Moraes, L.A.O Nunes, L.H.C. Andrade, S.M. Lima, On observation of the downconversion mechanism in Er3+/Yb3+ co-doped tellurite glass using thermal and optical parameters. J. Lumin 157, 365–370 (2015)

    Article  Google Scholar 

  52. M. Seshadri, Y.C. Ratnakaram, D. Thirupathi Naidu, K. Venkata Rao, Investigation of spectroscopic properties (absorption and emission) of Ho3+ doped alkali, mixed alkali and calcium phosphate glasses. Opt. Mater 32, 535–542 (2010)

    Article  ADS  Google Scholar 

  53. S. Balaji, A.D. Sontakke, R. Sen, K. Annapurna, Efficient ∼2.0 µm emission from Ho3+ doped tellurite glass sensitized by Yb3+ ions: Judd–Ofelt analysis and energy transfer mechanism. Opt. Mater. Express 1(2), 138–150 (2011)

    Google Scholar 

  54. P.J. Dereń, D. Sztolberg, B. Brzostowski, B. Bondzior, Spectroscopic properties and Judd–Ofelt analysis of LaAlO3 monocrystal doped with Tm3+ ions. J. Lumin 178, 400–406 (2016)

    Article  Google Scholar 

  55. G. Venkataiah, C.K. Jayasankar, K. Venkata Krishnaiah, P. Dharmaiah, N. Vijaya, Concentration dependent luminescence properties of Sm3+-ions in tellurite-tungsten-zirconium glasses. Opt. Mater 40, 26–35 (2015)

    Article  Google Scholar 

  56. H. Takebe, Y. Nageno, K. Morinaga, Compositional dependence of Judd–Ofelt parameters in silicate, borate, and phosphate glasses. J. Am. Ceram. Soc. 78, 1161–1168 (1995)

    Article  ADS  Google Scholar 

  57. S.A. Lopez-Riveraa, J. Martina, A. Florezb, V. Balassone, Band assignments in absorption and photoluminescence of a new transparent fluoroindate glass doped with Er and Yb. J. Lumin 106, 291–299 (2004)

    Article  Google Scholar 

  58. M.P. Hehlen, N.J. Cockroft, T.R. Gosnell, Spectroscopic properties of Er3+-and Yb3+-doped soda-lime silicate and aluminosilicate glasses. Phys. Rev. B 56, 9302–9318 (1997)

    Article  ADS  Google Scholar 

  59. H. Desirena, E. De la Rosa, V.H. Romero, J.F. Castillo, L.A. Díaz-Torres, J.R. Oliva, Comparative study of the spectroscopic properties of Yb3+/Er3+ codoped tellurite glasses modified with R2O (R = Li, Na and K). J. Lumin 132(2), 391–397 (2012)

    Article  Google Scholar 

  60. K. Maheshvaran, S. Arunkumar, V. Sudarsan, V. Natarajan, K. Marimuthu, Structural and luminescence studies on Er3+/Yb3+ co-doped boro-tellurite glasses. J. Alloy. Compd 561, 142–150 (2013)

    Article  Google Scholar 

  61. S. Möller, A. Hoffmann, D. Knaut, J. Flottmann, T. Jüstel, Determination of vis and NIR quantum yields of Nd3+-activated garnets sensitized by Ce3+. J. Lumin 158, 365–370 (2015)

    Article  Google Scholar 

  62. S.K.W. MacDougall, A. Ivaturi, J. Marques-Hueso, K.W. Krämer, B.S. Richards, Broadband photoluminescent quantum yield optimisation of Er3+-doped β-NaYF4 for upconversion in silicon solar cells. Sol. Energ. Mat. Sol. C 128, 18–26 (2014)

    Article  Google Scholar 

  63. R.S. Quimby, M.G. Drexhage, M.J. Suscavage, Efficient frequency up-conversion via energy transfer in fluoride glasses. Electron. Lett. 1(23), 32–34 (1987)

    Article  Google Scholar 

  64. H. Lin, E.Y.B. Pun, S.Q. Man, Optical transitions and frequency upconversion of Er3+ ions in Na2O. Ca3Al2Ge3O12 glasses. J. Opt. Soc. Am. B 18(5), 602–609 (2001)

    Article  ADS  Google Scholar 

  65. Z.D. Pan, S.H. Morgan, K. Dyer, A. Ueda, H. Liu, Host dependent optical transitions of Er3+ ions in lead-germanate and lead tellurium germanate glasses. J. Appl. Phys 79(12), 8906–8913 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) (61275057) and the Natural Science Foundation of Liaoning Province (2015020179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C.L., Pun, E.Y.B., Wang, Z.Q. et al. Upconversion photon quantification of holmium and erbium ions in waveguide-adaptive germanate glasses. Appl. Phys. B 123, 64 (2017). https://doi.org/10.1007/s00340-017-6648-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6648-4

Keywords

Navigation