Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy

Abstract

We report in situ measurements of non-uniform temperature, H2O and CO2 concentration distributions in a premixed methane–air laminar flame using tunable diode laser absorption spectroscopy (TDLAS). A mid-infrared, continuous-wave, room-temperature interband cascade laser (ICL) at 4183 nm was used for the sensitive detection of CO2 at high temperature.The H2O absorption lines were exploited by one distributed feedback (DFB) diode laser at 1343 nm and one ICL at 2482 nm to achieve multi-band absorption measurements with high species concentration sensitivity, high temperature sensitivity, and immunity to variations in ambient conditions. A novel profile-fitting function was proposed to characterize the non-uniform temperature and species concentrations along the line-of-sight in the flame by detecting six absorption lines of CO2 and H2O simultaneously. The flame temperature distribution was measured at different heights above the burner (5–20 mm), and compared with the thermocouple measurement with heat-transfer correction. Our TDLAS measured temperature of the central flame was in excellent agreement (<1.5% difference) with the thermocouple data.The TDLAS results were also compared with the CFD simulations using a detailed chemical kinetics mechanism (GRI 3.0) and considering the heat loss to the surroundings.The current CFD simulation overpredicted the flame temperature in the gradient region, but was in excellent agreement with the measured temperature and species concentration in the core of the flame.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    C.A.Taatjes, N.Hansen, A.McIlroy, J.A.Miller, J.P.Senosiain, S.J.Klippenstein, F.Qi, L.Sheng, Y.Zhang, T.A.Cool, Science308(5730), 1887–1889 (2005)

    ADS  Article  Google Scholar 

  2. 2.

    F.N.Egolfopoulos, N.Hansen, Y.Ju, K.Kohse-Höinghaus, C.K.Law, F.Qi, Prog. Energy Combust. Sci43, 36–67 (2014)

    Article  Google Scholar 

  3. 3.

    R.K.Hanson, D.F.Davidson, Prog. Energy Combust. Sci44, 103–114 (2014)

    Article  Google Scholar 

  4. 4.

    S.Cheskis, Prog. Energy Combust. Sci25(3), 233–252 (1999)

    Article  Google Scholar 

  5. 5.

    J. H.Frank, P. A.Kalt, R. W.Bilger, Combust. Flame116(1), 220–232 (1999)

    Article  Google Scholar 

  6. 6.

    J.Kiefer, F.Ossler, Z.Li, M.Aldén, Combust. Flame158(3), 583–585 (2011)

    Article  Google Scholar 

  7. 7.

    S.Roy, J.R.Gord, A.K.Patnaik, Prog. Energy Combust. Sci36(2), 280–306 (2010)

    Article  Google Scholar 

  8. 8.

    A.Cutler, P.Danehy, R.Springer, S.O’, Byrne, D.Capriotti, R.Deloach, AIAA. J.41(12), 2451–2459 (2003)

    ADS  Article  Google Scholar 

  9. 9.

    A. D.Cutler, L. M.Cantu, E. C.Gallo, R.Baurle, P. M.Danehy, R.Rockwell, C.Goyne, and J.McDaniel, AIAA. J.53(9), 2762–2770 (2015)

    ADS  Article  Google Scholar 

  10. 10.

    M.E.Webber, J.Wang, S.T.Sander, D.S.Baer, R.K.Hanson, Proc. Combust. Inst28(1), 407–413 (2000)

    Article  Google Scholar 

  11. 11.

    Z.Qu, R.Ghorbani, D.Valiev, F.M.Schmidt, Opt. Express23(12), 16492–16499 (2015)

    ADS  Article  Google Scholar 

  12. 12.

    C.Liu, L.Xu, J.Chen, Z.Cao, Y.Lin, W.Cai, Opt. Express23(17), 22494–22511 (2015)

    ADS  Article  Google Scholar 

  13. 13.

    F.Migliorini, S.Deluliis, F.Cignoli, G.Zizak, Combust. Flame153(3), 384–393 (2008)

    Article  Google Scholar 

  14. 14.

    G.Hartung, J.Hult, C.F.Kaminski, Meas. Sci. Technol17(9), 2485–2493 (2006)

    ADS  Article  Google Scholar 

  15. 15.

    X.Zhou, X.Liu, J.B.Jeffries, R.K.Hanson, Meas. Sci. Technol14(8), 1459–1468 (2003)

    ADS  Article  Google Scholar 

  16. 16.

    C.S.Goldenstein, Ph.D.Thesis, (Stanford University, 2014)

  17. 17.

    X.Ouyang, P.L.Varghese, Appl. Opt.28(18), 3979–3984 (1989)

    ADS  Article  Google Scholar 

  18. 18.

    S.T.Sanders, J.Wang, J.B.Jeffries, R.K.Hanson, Appl. Opt.40(24), 4404–4415 (2001)

    ADS  Article  Google Scholar 

  19. 19.

    X.Liu, Ph.D. Thesis, (Stanford University, 2006)

  20. 20.

    X.Zhou, Ph.D Thesis (Stanford University, 2005)

  21. 21.

    G.Zhang, J.Liu, Z.Xu, Y.He, R.Kan, Appl. Phys. B122(1), 1–9 (2016)

    ADS  Google Scholar 

  22. 22.

    C.Liu, L.Xu, F.Li, Z.Cao, S.A.Tsekenis, H.McCann, Appl. Phys. B120(3), 407–416 (2015)

    ADS  Article  Google Scholar 

  23. 23.

    L.Ma, W.Cai, A.W.Caswell, T.Kraetschmer, S.T.Sanders, S.Roy, J.R.Gord, Opt. Express17(10), 8602–8613 (2009)

    ADS  Article  Google Scholar 

  24. 24.

    Q.Lei, Y.Wu, W.Xu, L.Ma, Opt. Express24(14), 15912–15926 (2016)

    ADS  Article  Google Scholar 

  25. 25.

    L.Ma, Y.Wu, W.Xu, S.D.Hammack, T.Lee, C.D.Carter, Appl. Opt.55(20), 5310–5315 (2016)

    ADS  Article  Google Scholar 

  26. 26.

    L.Xu, C.Liu, W.Jing, Z.Cao, X.Xue, Y.Lin, Rev. Sci. Instrum.87(1), 013101 (2016)

    ADS  Article  Google Scholar 

  27. 27.

    R.K.Hanson, R.M.Spearrin, C.S.Goldenstein, Spectroscopy and optical diagnostics for gases(Springer, Berlin, 2015)

    Google Scholar 

  28. 28.

    L.S.Rothman, I.E.Gordon, Y.Babikov, A.Barbe, D.C.Benner, P.F.Bernath, M.Birk, L.Bizzocchi, V.Boudon, L.R.Brown, J. Quant. Spectrosc. Radiat. Transf.130, 4–50 (2013).

    ADS  Article  Google Scholar 

  29. 29.

    R.M.Spearrin, W.Ren, J.B.Jeffries, R.K.Hanson, Appl. Phys. B 116 (4), 855–865 (2014)

    Article  Google Scholar 

  30. 30.

    G.P.Smith, D.M.Golden, M.Frenklach, N.W.Moriarty, B.Eiteneer, M.Goldenberg, C.T.Bowman, R.K.Hanson, S.Song, W.C.GardinerJr, “GRI-Mech 3.0,” URL: http://www.me.berkeley.edu/gri_mech/. Accessed 18 Jan 2017

  31. 31.

    C.R.Shaddix, Proceedings of the 33rd National Heat Transfer Conference, Albuquerque, New Mexico, 15–17 Aug 1999

  32. 32.

    N.Hansen, T.A.Cool, P.R.Westmoreland, K.Kohse-Höinghaus, Prog. Energy Combust. Sci35(2), 168–191 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China (NSFC) (11502222) and CUHK Direct Grant for Research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wei Ren.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, L.H., Lau, L.Y. & Ren, W. Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy. Appl. Phys. B 123, 83 (2017). https://doi.org/10.1007/s00340-017-6645-7

Download citation

Keywords

  • Flame Temperature
  • Laminar Flame
  • Thermocouple Measurement
  • Tunable Diode Laser Absorption Spectroscopy
  • Multiplicative Algebraic Reconstruction Technique