Skip to main content
Log in

Two-color thermosensors based on [Y\(_{1-x}\)Dy\(_x\)(acetylacetonate)\(_3\)(1,10-phenanthroline)] molecular crystals

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We develop a two-color thermometry (TCT) phosphor based on [Y\(_{1-x}\)Dy\(_x\)(acetylacetonate)\(_3\)(1,10-phenanthroline)] ([Y\(_{1-x}\)Dy\(_x\)(acac)\(_3\)(phen)]) molecular crystals for use in heterogeneous materials. We characterize the optical properties of [Y\(_{1-x}\)Dy\(_x\)(acac)\(_3\)(phen)] crystals at different temperatures and Dy concentrations, and find that the emission is strongly quenched by increasing temperature and concentration. We also observe a broad background emission (due to the ligands) and find that [Y\(_{1-x}\)Dy\(_x\)(acac)\(_3\)(phen)] photodegrades under 355 nm illumination with the photodegradation resulting in decreased luminescence intensity. However, while decreasing the overall emission intensity, photodegradation is not found to influence the integrated intensity ratio of the \({}^4I_{15/2} \rightarrow {}^6H_{15/2}\) and \({}^4F_{9/2} \rightarrow {}^6H_{15/2}\) transitions. This ratio allows us to compute the temperature of the complex. Based on the temperature dependence of these ratios; we calculate that [Y\(_{1-x}\)Dy\(_x\)(acac)\(_3\)(phen)] has a maximum sensitivity of 1.5% K\(^{-1}\) and our TCT system has a minimum temperature resolution of 1.8 K. Finally, we demonstrate the use of [Y\(_{1-x}\)Dy\(_x\)(acac)\(_3\)(phen)] as a TCT phosphor by determining a dynamic temperature profile using the emission from [Y\(_{1-x}\)Dy\(_x\)(acac)\(_3\)(phen)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. M. Chen, S. You, K. Suslick, D. Dlott, Hot spots in energetic materials generated by infared and ultrasound, detected by thermal imaging microscopy. Rev. Sci. Instrum. 85, 023705 (2014)

    Article  ADS  Google Scholar 

  2. M. Chen, S. You, K. Suslick, D. Dlott, Hot spot generation in energetic materials created by long-wavelength infared radiation. App. Phys. Lett. 104, 061907 (2014)

    Article  ADS  Google Scholar 

  3. R. Pokharel, J. Lind, A. Kanjarla, R. Lebensohn, S. Li, P. Kenesei, R. Suter, A. Rollett, Polycrystal plasticity: comparison between grain-scale observations of deformation and simulations. Annu. Rev. Condens. Matter Phys. 5, 317–346 (2014)

    Article  Google Scholar 

  4. Q. An, W. Goddard, S. Zybin, A. Jaramillo-Botero, T. Zhou, Highly shocked polymer bonded explosiuves at a nonplanar interface: hot-spot formation leading to detonation. J. Phys. Chem. C 117, 26551–26561 (2013)

    Article  Google Scholar 

  5. Y. Wu, F. Huang, A microscopic model for predicting hot-spot ignition of granular energetic crystals in response to drop-weight impacts. Mech. Mater. 43, 835–852 (2011)

    Article  Google Scholar 

  6. P. Rae, H. Goldrein, S. Palmer, J. Field, A. Lewis, Quasi-static studies of the deformation and failure of beta-hmx based polymer bonded explosives. Proc. R. Soc. A Math. Phys. Eng. Sci. 458, 743–762 (2002)

    Article  Google Scholar 

  7. Y. Gruzdkov, Y. Gupta, Vibrational properties and structure of pentaerythritol tetranitrate. J. Phys. Chem. A 105, 6197–6202 (2001)

    Article  Google Scholar 

  8. Y. Gupta, Recent developments to understand molecular-changes in schocked energetic materials. Journal De Physique IV 5, 345–356 (1995)

    Article  Google Scholar 

  9. A. Mellor, D. Wiegand, K. Isom, Hot-spot histories in energetic materials. Struct. Prop. Energ. Mater. 296, 293–298 (1993)

    Google Scholar 

  10. J. Field, Hot-spot ignition mechanisms for explosives. Acc. Chem. Res. 25, 489–496 (1992)

    Article  Google Scholar 

  11. J. Field, N. Bourne, S. Palmer, S. Walley, J. Smallwood, Hot-spot ignition mechanisms for explosives and propellants. Philos. Trans. R. Soc. Lond. Math. Phys. Eng. Sci. 339, 269–283 (1992)

    Article  ADS  Google Scholar 

  12. J. Field, G. Swallowe, S. Heavens, Ignition mechanisms of explosives during mechanical deformation. Proc. R. Soc. Lond. Ser. A 382, 231 (1982)

    Article  ADS  Google Scholar 

  13. R. Winter, E. Faber, The role of localized plastic flow in the impact initiation of explosives. Proc. R. Soc. Lond. Ser. A 343, 399–413 (1975)

    Article  ADS  Google Scholar 

  14. M. Chaudhri, J. Field, The role of rapidly compressed gas pockets in the initiation of condensed explosives. Proc. R. Soc. Lond. 340, 113–128 (1974)

    Article  ADS  Google Scholar 

  15. S.N. Luo, B.J. Jensen, D.E. Hooks, K.J. Ramos, J.D. Yeager, K. Kwiatkowski, T. Shimada, D.A. Fredenburg, K. Fezzaa (2012) Ultrafast, high resolution, phase contrast imaging of shock response with synchrotron radiation: opportunities and challenges, in APS meeting abstracts

  16. B.J. Jensen, K.J. Ramos, A.J. Iverson, J. Bernier, C.A. Carlson, J.D. Yeager, K. Fezzaa, D.E. Hooks, Dynamic experiment using impulse at the advanced photon source. J. Phys. Conf. Ser. 500, 042001 (2014)

    Article  Google Scholar 

  17. B.J. Jensen, S.N. Luo, D.E. Hooks, K. Fezzaa, K.J. Ramos, J.D. Yeager, K. Kwiatkowski, T. Shimada, D.M. Dattelbaum, Ultrafast, high resolution, phase contrast imaging of impact response with synchrotron radiation. AIP Adv. 2, 012170 (2012)

    Article  ADS  Google Scholar 

  18. J. Yeager, S. Luo, B. Jensen, K. Fezzaa, D. Montgomery, D. Hooks, High-speed synchrotron x-ray phase contrast imaging for analysis of low-z composite microstructure. Compos. Part A Appl. Sci. Manuf. 43, 885–892 (2012)

    Article  Google Scholar 

  19. S.N. Luo, B.J. Jensen, D.E. Hooks, K. Fezzaa, K.J. Ramos, J.D. Yeager, K. Kwiatkowski, T. Shimada, Gas gun shock experiments with single-pulse X-ray phase contrast imaging and diffraction at the advanced photon source. Rev. Sci. Instrum. 83, 073903 (2012)

    Article  ADS  Google Scholar 

  20. DCS facility. http://www.dcs-aps.wsu.edu/

  21. New research opportunities in dynamic compression science, Tech. rep., Institute for Shock Physics, Washington State University (2012)

  22. A.Z.M. Al-Juboori, Rare earth (Sm\(^{3+}\) and Dy\(^{3+}\))-doped gadolinium oxide nanomaterials for luminescence thermometry. Phys. Scr. T157, 014004 (2013)

  23. A. Heyes, S. Seefeldt, J. Feist, Two-colour phosphor thermometry for surface temperature measurement. Optics Laser Technol. 38, 257–265 (2006)

    Article  ADS  Google Scholar 

  24. A. Khalid, K. Kontis, Thermographic phosphors for high temperature measurements: principles, current state of the art and recent applications. Sensors 8, 5673–5744 (2008)

    Article  Google Scholar 

  25. K. Kontis, A review of some current research on pressure sensitive and thermographic phosphor techniques. Aeronaut. J. 3162, 495–508 (2007)

    Article  Google Scholar 

  26. S.W. Allison, G. Gillies, Remote thermometry with thermographic phosphors: Instrumentation and applications. Rev. Sci. Instrum. 68, 2615–2650 (1997)

    Article  ADS  Google Scholar 

  27. M. Cates, S. Allison, S. Jaiswal, D. Beshears, YAG: Dy and YAG: Tm fluorescence to 1700\(^{\circ }\)c. in The 49th International Instrumentation Symposium—The Instrumentation, Systems, and Automation Society (Orlando, FL, 2003)

  28. G. Gross, A. Smith, M. Post, Surface thermometry by laser induced fluorescence. Rev. Sci. Instrum. 60, 12 (1989)

    Article  Google Scholar 

  29. K. Kontis, Y. Syogenji, N. Yoshikawa, Surface thermometry by laser induced fluorescence of Dy\(^{3+}\) :YAG. Aeronaut. J. 106, 453–457 (2002)

    Google Scholar 

  30. K. Kontis, Surface heat transfer measurements inside a supersonic combustor by laser induced fluorescence. J. Thermophys. Heat Transf. 17, 320–325 (2003)

    Article  Google Scholar 

  31. R. Hasegawa, I. Sakata, H. Yanagihara, B. Johansson, A. Omrane, M. Alden, Two-dimensional gas phase temperature measurements using phosphor thermometry. App. Phys. B 88, 291–296 (2007)

    Article  ADS  Google Scholar 

  32. G. Sarner, A. Omrane, H. Seyfried, M. Richter, H. Schmidt, M. Alden, Laser diagnostics applied to a full-size fighter jet afterburner, in European Combustion Meeting (2005)

  33. J. Feist, A. Heyes, S. Seefeldt, Thermographic phosphors for gas turbines: instrumentation development and measurement uncertainties, in 11th international symposium on application of laser techniques to fluid mechanics (Lisbon, Portugal, 2002)

  34. J.P. Feist, A.L. Heyes, J.R. Nicholls, Phosphor thermometry in an electron beam physical vapour deposition produced thermal barrier coating doped with dysprosium, in Proceedings of the Institution of Mechanical Engineers , vol. 215 (2001), pp. 333–341

  35. J.P. Kumar, G. Ramgopal, Y. Vidya, K. Anantharaju, B.D. Prasad, S. Sharma, S. Prashantha, H. Nagaswarupa, D. Kavyashree, H. Nagabhushana, Green synthesis of Y\(_2\)O\(_3\):Dy\(^{3+}\) nanophosphor with enhanced photocatalytic activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 149, 687–697 (2015)

    Article  Google Scholar 

  36. S.K. Gupta, M. Mohapatra, V. Natarajan, S.V. Godbole, Photoluminescence investigations of the near white light emitting perovskite ceramic SrZrO\(_3\):Dy\(^{3+}\) prepared via gel-combustion route. Int. J. Appl. Ceram. Technol. 10, 593–602 (2013)

    Article  Google Scholar 

  37. M. Jayasimhadri, B.V. Ratnam, K. Jang, H.S. Lee, B. Chen, S.-S. Yi, J.-H. Jeong, L. Rama Moorthy, Combustion synthesis and luminescent properties of nano and submicrometer-size Gd\(_2\)O\(_3\):Dy\(^{3+}\) phosphors for white leds. Int. J. Appl. Ceram. Technol. 8, 709–717 (2011)

  38. B. Ratnam, M. Jayasimhadri, K. Jang, H. Sueb Lee, S.-S. Yi, J.-H. Jeong, White light emission from NaCaPO\(_4\):Dy\(^{3+}\) phosphor for ultraviolet-based white light-emitting diodes. J. Am. Ceram. Soc. 93, 3857–3861 (2010)

  39. J. Kaur, Y. Parganiha, V. Dubey, D. Singh, D. Chandrakar, Synthesis, characterization and luminescence behavior of ZrO\(_2\):Eu\(^{3+}\), Dy\(^{3+}\) with variable concentration of Eu and Dy doped phosphor. Superlattices Microstruct. 73, 38–53 (2014)

    Article  ADS  Google Scholar 

  40. Y. Akita, T. Harada, R. Sasai, K. Tomita, K. Nishiyama, Emission properties of Ln (Eu, Tb, Dy, Er)-doped Y\(_2\)O\(_3\) nanoparticles synthesized by surfactant-assembly and their applications in visible color-tuning. J. Photochem. Photobiol. A Chem. 299, 87–93 (2015)

    Article  Google Scholar 

  41. B.R. Anderson, R. Gunawidjaja, P. Price, H. Eilers, Spectroscopic determination of thermal impulse in sub-second heating events using lanthanide-doped oxide precursors and phenomenological modeling. J. Appl. Phys. 120, 083102 (2016)

    Article  ADS  Google Scholar 

  42. R. Gunawidjaja, B.R. Anderson, H.D. y Riega, H. Eilers, Sub-second laser heating of thermal impulse sensors, in AIP conference proceedings (2016) (pending publication).

  43. W.T. Carnall, P.R. Fields, K. Rajnak, Electronic energy levels in the trivalent lanthanide aquo ions. J. Chem. Phys. 49, 4424–4442 (1968)

    Article  ADS  Google Scholar 

  44. W. Carnall, The absorption and fluorescence spectra of rare earth ions in solution, in Handbook on the Physics and Chemistry of Rare Earths, chap. 24, eds. by K. Gschneidner, L. Eyring (Elsevier BV, Amsterdam, 1979)

  45. J.-C.G. Bünzli, S.V. Eliseeva, Basics of lathanide photophysics, in Lanthanide Luminescence: Photophysical, Analytical and Biological Aspects, eds. P. Hanninen, H. Harma (Springer, New York, 2010)

  46. J. Bünzli, Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev. 110, 2729–2755 (2010)

    Article  Google Scholar 

  47. N.F.W.F. Sager, F.A. Serafin, Substituent effects on intramolecular energy transfer. I. Absorption and phosphorescence spectra of rare earth \(\beta\)-diketone chelates. J. Phys. Chem. 69, 1092 (1965)

    Article  Google Scholar 

  48. D. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836 (1953)

    Article  ADS  Google Scholar 

  49. H. Xin, M. Shi, X.C. Gao, Y.Y. Huang, Z.L. Gong, D.B. Nie, H. Cao, Z.Q. Bian, F.Y. Li, C.H. Huang, The effect of different neutral ligands on photoluminescence and electroluminescence properties of ternary terbium complexes. J. Phys. Chem. B 108, 10796–10800 (2004)

    Article  Google Scholar 

  50. S.I. Klink, Synthesis and photophysics of light-converting lanthanide complexes, Ph.D. thesis, University of Twente (2000)

  51. M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J.C. Rodriguez-Ubis, J. Kankare, Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield. J. Lumin. 75, 149–169 (1997)

    Article  Google Scholar 

  52. J. Feng, L. Zhou, S.-Y. Song, Z.-F. Li, W.-Q. Fan, L.-N. Sun, Y.-N. Yu, H.-J. Zhang, A study on the near-infrared luminescent properties of xerogel materials doped with dysprosium complexes. Dalton Trans. 33, 6593–6598 (2009)

    Article  Google Scholar 

  53. A. Adronov, J.M. Frechet, Light-harvesting dendrimers. Chem. Commun. 18, 1701–1710 (2000)

    Article  Google Scholar 

  54. R.S. Dickens, J.A.K. Howard, C.L. Maupin, J.M. Moloney, D. Parker, R.D. Peacock, J.P. Riehl, G. Siligardi, Ground and excited state chiroptical properties of enantiopure macrocyclic tetranaphthyl lanthanide complexes: controlled modulation of the frequency and polarisation of emitted light. New J. Chem. 22, 891–899 (1998)

    Article  Google Scholar 

  55. J. Bünzli, Luminescent probes, in “Lanthanide Probes in Life Chemical and Earth Sciences: Theory and Practice,” , J. Bunzli and G. Choppin, eds. (Elsevier, 1989), pp. 219–293

  56. N.M. Shavaleev, S.V. Eliseeva, R. Scopelliti, J.-C.G. Bünzli, N-aryl chromophore ligands for bright europium luminescence. Inorg. Chem. 49, 3927–3936 (2010)

    Article  Google Scholar 

  57. S.V. Eliseeva, J.-C.G. Bünzli, Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 39, 189–227 (2010)

    Article  Google Scholar 

  58. L.N. Puntus, K.A. Lyssenko, I.S. Pekareva, J.-C.G. Bünzli, Intermolecular interactions as actors in energy-transfer processes in lanthanide complexes with 2,2’-bipyridine. J. Phys. Chem. B 113, 9265–9277 (2009)

    Article  Google Scholar 

  59. J.-C.G. Bünzli, Review: Lanthanide coordination chemistry: from old concepts to coordination polymers. J. Coord. Chem. 67, 3706–3733 (2014)

    Article  Google Scholar 

  60. J.-C. G. Bünzli, Lanthanide light for biology and medical diagnosis. J. Lumin.170(Part 3): 866 – 878 (2016) (Light, Energy and Life)

  61. J.-C. G. Bünzli, On the design of highly luminescent lanthanide complexes,” Coordination Chemistry Reviews 293–294, 19 – 47 (2015) (41st International Conference on Coordination Chemistry, Singapore, July 2014)

  62. T. Forster, Delocalized excitation and excitation transfer, in Modern Quantum Chemistry. Istanbul Lectures. Part III: Action of Light and Organic Crystals, vol. 3 (Academic Press, New York, 1965), pp. 93–137

  63. T. Forster, 10th spiers memorial lecture. transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 27, 7–17 (1959)

    Article  Google Scholar 

  64. T. Forster, Zwischenmolekulare energiewanderung und fluoreszenz. Ann. Phys. 2, 55 (1948)

    Article  MATH  Google Scholar 

  65. T. Forster, Energiewanderung und fluoreszenz. Naturwissenschaften 33, 166–175 (1946)

    Article  ADS  MATH  Google Scholar 

  66. D. Dexter, J.H. Schulman, Theory of concentration quenching in inorganic phosphors. J. Chem. Phys. 22, 1063 (1954)

    Article  ADS  Google Scholar 

  67. D. Dexter, W. Heller, Capture and collision processes for excitons in alkali halides. Phys. Rev. 84, 377 (1951)

    Article  ADS  Google Scholar 

  68. W.R. Heller, A. Marcus, A note on the propagation of excitation in an idealized crystal. Phys. Rev. 84, 809 (1951)

    Article  ADS  MATH  Google Scholar 

  69. S. Sato, M. Wada, Relations between intramolecular energy transfer efficiencies and triplet state energies in rare earth \(\beta\)-diketone chelates. Bull. Chem. Soc. Jpn. 43, 1955–1962 (1970)

    Article  Google Scholar 

  70. J. Tang, P. Zhang, Lanthanide Single Molecule Magnets (Springer, Berlin, 2015)

    Book  Google Scholar 

  71. G.-J. Chen, C.-Y. Gao, J.-L. Tian, J. Tang, W. Gu, X. Liu, S.-P. Yan, D.-Z. Liao, P. Cheng, Coordination-perturbed single-molecule magnet behaviour of mononuclear dysprosium complexes. Dalton Trans. 40, 5579 (2011)

    Article  Google Scholar 

  72. W. C. Choy, D. Tao, Rare-earth complexes and its applications in organic light emitting diodes, in Solid State Chemistry Research Trends, chap. 2, ed. by R.W. Buckley (Nova Science Publishers Inc, New York, 2007)

  73. H. Brito, O. Malta, M. Felinto, E. Teotonio, Luminescence phenomena involving metal enolates, in The Chemistry of Metal Enolates, chap. 3, ed. by J. Zabicky (Wiley, New York, 2009) (The Chemistry of Functional Groups)

  74. C.Y. Peng, H.J. Zhang, J.B. Yu, Q.G. Meng, L.S. Fu, H.R. Li, L.N. Sun, X.M. Guo, Synthesis, characterization, and luminescence properties of the ternary europium complex covalently bonded to mesoporous sba-15. J. Phys. Chem. B 109, 15278 (2005)

    Article  Google Scholar 

  75. H. Xin, Y. Ebina, R. Ma, K. Takada, T. Sasaki, J. Phys. Chem. B 110, 9863 (2006)

    Article  Google Scholar 

  76. V.R. Kharabe, A.H. Oza, S.J. Dhoble, Synthesis, PL characterizations and concentration quenching effect in Dy\(^{3+}\) and Eu\(^{3+}\) activated LiCaBO\(_3\) phosphor. Luminescence 30, 432–438 (2015)

    Article  Google Scholar 

  77. J.J. Joos, K.W. Meert, A.B. Parmentier, D. Poelman, P.F. Smet, Thermal quenching and luminescence lifetime of saturated green Sr\(_{1-x}\)Eu\(_x\) Ga\(_2\)S\(_4\) phosphors. Opt. Mater. 34, 1902–1907 (2012)

    Article  ADS  Google Scholar 

  78. O. Meza, E. Villabona-Leal, L. Diaz-Torres, H. Desirena, J. Rodriguez-Lopez, E. Perez, Luminescence concentration quenching mechanism in Gd\(_2\)O\(_3\):Eu\(^{3+}\). J. Phys. Chem. A 118, 1390–1396 (2014)

    Article  Google Scholar 

  79. G. Ju, Y. Hu, L. Chen, X. Wang, Z. Mu, Concentration quenching of persistent luminescence. Phys. B Condens. Matter 415, 1–4 (2013)

    Article  ADS  Google Scholar 

  80. J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006)

    Book  Google Scholar 

  81. J. Bierwagen, S. Yoon, N. Gartmann, B. Walfort, H. Hagemann, Thermal and concentration dependent energy transfer of Eu\(^{2+}\) in SrAl\(_2\)O\(_4\). Opt. Mater. Express 6, 793–803 (2016)

  82. J. Ueda, P. Dorenbos, A.J. Bos, A. Meijerink, S. Tanabe, Insight into the thermal quenching mechanism for Y\(_3\)Al\(_5\)O\(_12\):Ce\(^{3+}\) through thermoluminescence excitation spectroscopy. J. Phys. Chem. C 119, 25003–25008 (2015)

    Article  Google Scholar 

  83. R. Yu, D.S. Shin, K. Jang, Y. Guo, H.M. Noh, B.K. Moon, B.C. Choi, J.H. Jeong, S.S. Yi, Luminescence and thermal-quenching properties of Dy\(^{3+}\)-doped Ba\(_2\)CaWO\(_6\) phosphors. Spectrochim. Acta A 125, 458–462 (2014)

    Article  ADS  Google Scholar 

  84. J. Feist, A. Heyes, The characterization of Y\(_2\)O\(_2\)S: Sm powder as a thermographic phosphor for high temperature applications. Meas. Sci. Technol. 11, 942–947 (2000)

    Article  ADS  Google Scholar 

  85. Y. Bi, C. Chen, Y.-F. Zhao, Y.-Q. Zhang, S.-D. Jiang, B.-W. Wang, J.-B. Han, J.-L. Sun, Z.-Q. Bian, Z.-M. Wang, S. Gao, Thermostability and photoluminescence of Dy( III ) single-molecule magnets under a magnetic field. Chem. Sci. 7, 5020 (2016)

    Article  Google Scholar 

  86. C.D.S. Brites, P.P. Lima, N.J.O. Silva, A. Millan, V.S. Amaral, F. Palacio, L.D. Carlos, Thermometry at the nanoscale. Nanoscale 4, 4799 (2012)

    Article  ADS  Google Scholar 

  87. B.R. Anderson, S.-T. Hung, M.G. Kuzyk, Wavelength dependence of reversible photodegradation of disperse orange 11 dye-doped pmma thin films. J. Opt. Soc. Am. B 32, 1043–1049 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Air Force Office of Scientific Research, Award # FA9550-15-1-0309 to Washington State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin R. Anderson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, B.R., Gunawidjaja, R. & Eilers, H. Two-color thermosensors based on [Y\(_{1-x}\)Dy\(_x\)(acetylacetonate)\(_3\)(1,10-phenanthroline)] molecular crystals. Appl. Phys. B 123, 62 (2017). https://doi.org/10.1007/s00340-017-6638-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6638-6

Keywords

Navigation