Skip to main content
Log in

A phase-locked laser system based on double direct modulation technique for atom interferometry

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We demonstrate a laser system based on phase modulation technology and phase feedback control. The two laser beams with frequency difference of 6.835 GHz are modulated using electro-optic and acousto-optic modulators, respectively. Parasitic frequency components produced by the electro-optic modulator are filtered using a Fabry–Perot Etalon. A straightforward phase feedback system restrains the phase noise induced by environmental perturbations. The phase noise of the laser system stays below −125 rad2/Hz at frequency offset higher than 500 kHz. Overall phase noise of the laser system is evaluated by calculating the contribution of the phase noise to the sensitivity limit of a gravimeter. The results reveal that the sensitivity limited by the phase noise of our laser system is lower than that of a state-of-the-art optical phase-lock loop scheme when a gravimeter operates at short pulse duration, which makes the laser system a promising option for our future application of atom interferometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.B. Fixler, G.T. Foster, J.M. McGuirk, M.A. Kasevich, Science 315, 5808 (2007)

    Article  Google Scholar 

  2. G. Lamporesi, A. Bertoldi, L. Cacciapuoti, M. Prevedelli, G.M. Tino, Phys. Rev. Lett. 100, 050801 (2008)

    Article  ADS  Google Scholar 

  3. R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, F. Biraben, Phys. Rev. Lett. 106, 080801 (2011)

    Article  ADS  Google Scholar 

  4. D. Schlippert, J. Hartwig, H. Albers, L.L. Richardson, C. Schubert, A. Roura, W.P. Schleich, W. Ertmer, E.M. Rasel, Phys. Rev. Lett. 112, 203002 (2014)

    Article  ADS  Google Scholar 

  5. R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B. Battelier, A. Villing, F. Moron, M. Lours, Y. Bidel, A. Bresson, A. Landragin, P. Bouyer, Nat. Commun. 2, 474 (2011)

    Article  ADS  Google Scholar 

  6. Peters, K.Y. Chung, S. Chu, Metrologia 38, 1 (2001)

    Article  Google Scholar 

  7. M. Kasevich, S. Chu, Phys. Rev. Lett. 67, 181 (1991)

    Article  ADS  Google Scholar 

  8. G. Santarelli, A. Clairon, S.N. Lea, G.M. Tino, Opt. Commun. 104, 339 (1994)

    Article  ADS  Google Scholar 

  9. G. Tackmann, M. Gilowski, Ch.. Schubert, P. Berg, T. Wendrich, W. Ertmer, E.M. Rasel, Opt. Express 18, 9258 (2010)

    Article  ADS  Google Scholar 

  10. M. Schmidt, M. Prevedelli, A. Giorgini, G.M. Tino, A. Peters, Appl. Phys. B 102, 11 (2011)

    Article  ADS  Google Scholar 

  11. S.H. Yim, S.-B. Lee, T. Y. Kwon, S. E. Park, Appl. Phys. B 115, 491 (2014)

    Article  ADS  Google Scholar 

  12. L. Cacciapuoti, M. de Angelis, M. Fattori, G. Lamporesi, T. Petelski, M. Prevedelli, J. Stuhler, G.M. Tino, Rev. Sci. Instrum. 76, 053111 (2005)

    Article  ADS  Google Scholar 

  13. J. Le Goue¨t, J. Kim, C. Bourassin-Bouchet, M. Lours, A. Landragin, F. Pereira Dos Santos, Opt. Commun. 282, 977 (2009)

    Article  ADS  Google Scholar 

  14. P. Bouyer, T.L. Gustavson, K.G. Haritos, M.A. Kasevich, Opt. Lett. 21, 1502 (1996)

    Article  ADS  Google Scholar 

  15. K.S. Lee, J. Kim, S.B. Lee, S.E. Park, T.Y. Kwon, J. Korean Phys. Soc. 67, 318 (2015)

    Article  ADS  Google Scholar 

  16. V. Ménoret, R. Geiger, G. Stern, N. Zahzam, B. Battelier, A. Bresson, A. Landragin, P. Bouyer, Opt. Lett. 36, 4128 (2011)

    Article  ADS  Google Scholar 

  17. N. Bonnin, Y.Bidel Zahzam,, A. Bresson, Phys. Rev. A 88, 043615 (2013)

    Article  ADS  Google Scholar 

  18. O. Carraz, F. Lienhart, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, A. Bresson, Appl. Phys. B, 97, 405 (2009)

    Article  ADS  Google Scholar 

  19. O. Carraz, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, A. Bresson, Phys. Rev. A 86, 033605 (2012)

    Article  ADS  Google Scholar 

  20. G. Ferrari, M.O. Mewes, F. Schreck, C. Salomon, Opt. Lett. 24, 151 (1999)

    Article  ADS  Google Scholar 

  21. J. Le Gouët, P. Cheinet, J. Kim, D. Holleville, A. Clairon, A. Landragin, F. Pereira Dos Santos, Eur. Phys. J. D. 44, 419 (2007)

    Article  ADS  Google Scholar 

  22. N. Song, X. Lu, W. Li, Y. Li, Y. Wang, J. Liu, X. Xu, X. Pan, Appl. Opt. 54, 6661 (2015)

    Article  ADS  Google Scholar 

  23. J. Zheng, Optical frequency-modulated continuous-wave (FMCW) interferometry (Springer, Berlin, 2005)

    Google Scholar 

  24. P. Cheinet, B. Canuel, F.P. Dos Santos, A. Gauguet, F. YverLeduc, A. Landragin, IEEE Trans. Instrum. Meas. 57, 1141 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jixun Liu and Yixiang Yu for fruitful discussions and Shifeng Yang for his contribution to the construction of the laser system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Pan, X., Song, N. et al. A phase-locked laser system based on double direct modulation technique for atom interferometry. Appl. Phys. B 123, 54 (2017). https://doi.org/10.1007/s00340-016-6630-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6630-6

Keywords

Navigation