Skip to main content

Advertisement

Log in

Time- and frequency-resolved determination of ultrafast energy transfer in optical Kerr measurements

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Transient energy transfer effect might occur in femtosecond pump–probe optical Kerr gate (OKG) measurements. Using time- and frequency-resolved two-dimensional pump–probe imaging spectroscopy, we are able to obtain the OKG spectra as a function of the delay time between pump and probe pulses. By analyzing the pump power dependence of the OKG spectra at different delay time, we find that due to the effect of transient energy transfer, the short-wavelength components of the OKG spectra are enhanced when the delay of the probe to pump pulse is positive, while the long-wavelength components increase when the delay is negative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Stoian, A. Rosenfeld, D. Ashkenasi, I.V. Hertel, N.M. Bulgakova, E.B. Campbell, Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation. Phys. Rev. Lett. 88, 097603 (1996)

    Article  ADS  Google Scholar 

  2. T.Y. Chen, C.H. Hsia, H.S. Son, D.H. Son, Ultrafast energy transfer and strong dynamic non-condon effect on ligand field transitions by coherent phonon in γ-Fe2O3 nanocrystals. J. Am. Chem. Soc. 129, 10829 (2007)

    Article  Google Scholar 

  3. A.J. Sabbah, D.M. Riffe, Femtosecond pump-probe reflectivity study of silicon carrier dynamics. Phys. Rev. B 66, 165217 (2002)

    Article  ADS  Google Scholar 

  4. Z. Wang, B. Zeng, G. Li, H. Xie, W. Chu, F. He, Y. Liao, W. Liu, H. Gao, Y. Cheng, Time-resolved shadowgraphs of transient plasma induced by spatiotemporally focused femtosecond laser pulses in fused silica glass. Opt. Lett 40, 5726 (2015)

    Article  ADS  Google Scholar 

  5. A. Azima, S. Dusterer, P. Radcliffe, H. Redlin, N. Stojanovic, W. Li, H. Schlarb, J. Feldhaus, D. Cubaynes, M. Meyer, J. Dardis, P. Hayden, P. Hough, V. Richardson, E.T. Kennedy, J.T. Costello, Time-resolved pump-probe experiments beyond the jitter limitations at FLASH. Appl. Phys. Lett. 94, 144102 (2009)

    Article  ADS  Google Scholar 

  6. H.L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, S.L. Chin, The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air. Chem. Phys 360, 171 (2009)

    Article  ADS  Google Scholar 

  7. J.L. Pecourt, J. Peon, B. Kohler, Ultrafast internal conversion of electronically excited RNA and DNA nucleosides in water. J. Am. Chem. Soc. 122, 9348 (2000)

    Article  Google Scholar 

  8. E.A. Mcarthur, K.B. Eisenthal, Ultrafast excited-state electron transfer at an organic liquid/aqueous interface. J. Am. Chem. Soc. 128, 1068 (2006)

    Article  Google Scholar 

  9. M. M. Gabriel, J. R. Kirschbrown, J. D. Christesen, C. W. Pinion, D. F. Zigler, E. M. Grumstrup, B. P. Mehl, E. M. Cating, J. F. Cahoon, and J. M. Papanikolas, Direct imaging of free carrier and trap carrier motion in silicon nanowires by spatially-separated femtosecond pump–probe microscopy. Nano. Lett. 13, 1336 (2013)

    Article  ADS  Google Scholar 

  10. Y.S. Jang, J. Lee, S. Kim, K. Lee, S. Han, Y.J. Kim, S.W. Kim, Space radiation test of saturable absorber for femtosecond laser. Opt. Lett 39, 2831 (2014)

    Article  ADS  Google Scholar 

  11. J.P. Geindre, P. Audebert, S. Rebibo, J.C. Gauthier, Single-shot spectral interferometry with chirped pulses. Opt. Lett 26, 1612 (2001)

    Article  ADS  Google Scholar 

  12. Y. Minami, H. Yamaki, I. Katayama, and J. Tekeda, Broadband pump–probe imaging spectroscopy applicable to ultrafast single-shot events. Appl. Phys. E. 7, 022402 (2014)

    Google Scholar 

  13. J. He, C. Zhu, Y. Wang, G. Cheng, K. Zou, D. Wu, X. Xie, A signal to noise ratio measurement for single shot laser pulses by use of an optical Kerr gate. Opt. Express 19, 4438 (2011)

    Article  ADS  Google Scholar 

  14. B. Yellampalle, K.Y. Kim, G. Rodriguez, J.H. Glownia, A.J. Taylor, Algorithm for high-resolution single-shot THz measurement using in-line spectral interferometry with chirped pulses. Appl. Phys. Lett. 87, 211109 (2005)

    Article  ADS  Google Scholar 

  15. J. Takeda, W. Oba, Y. Minami, T. Saiki, I. Katayama, Ultrafast crystalline-to-amorphous phase transition in Ge2Sb2Te5 chalcogenide alloy thin film using single-shot imaging spectroscopy. Appl. Phys. Lett. 104, 261903 (2014)

    Article  ADS  Google Scholar 

  16. F. Wang, G. Dukovic, L.E. Brus, T. Heinz, Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes. Phys. Rev. Lett. 92, 177401 (2004)

    Article  ADS  Google Scholar 

  17. S. Matsuo, L.H. Yan, J.H. Si, T. Tomita, S. Hashimoto, Reduction of pulse-to-pulse fluctuation in laser pulse energy using the optical Kerr effect. Opt. Lett. 37, 1646 (2012)

    Article  ADS  Google Scholar 

  18. A.S. Shan, E. Weling, L. Knoesel, M. Bartels, Bonn, A. Nahata, G.A. Reider, T.F. Heinz, Single-shot measurement of terahertz electromagnetic pulses by use of electro-optic sampling. Opt. Lett. 25, 426 (2000)

    Article  ADS  Google Scholar 

  19. H. Sakaibara, Y. Ikegaya, I. Katayama, J. Takeda, Single-shot time-frequency imaging spectroscopy using an echelon mirror. Opt. Lett. 37, 1118 (2012)

    Article  ADS  Google Scholar 

  20. N. Sugimoto, H. Kanbara, S. Fujiwara, K. Tanaka, Y. Shimizugawa, and K. Hirao, Third-order optical nonlinearities and their ultrafast response in Bi2O3–B2O3–SiO2 glasses. JOSA B. 16, 1904 (1999).

    Article  ADS  Google Scholar 

  21. J. T. Fourkas, L. Dhar, K. A. Nelson, and R. Trebino, Spatially encoded single-shot ultrafast spectroscopies. JOSA B. 12, 155 (1995)

    Article  ADS  Google Scholar 

  22. L. H. Yan, J. J. Yue, J. H. Si, S. Jia, F. Chen, and X. Hou, Polarization dependence of femtosecond optical kerr signals in bismuth glasses. IEEE Photonics Technol. Lett. 21, 1606 (2009)

    Article  ADS  Google Scholar 

  23. H. Inouye, K. Tanaka, I. Tanahashi, Y. Kondo, K. Hirao, Mechanism of a terahertz optical Kerr shutter with a gold nanoparticle system. J. Phys. Soc. Jpn. 68, 3810 (1999)

    Article  ADS  Google Scholar 

  24. H. Kanbara, S. Fujiwara, K. Tanaka, H. Nasu, K. Hirao, Third-order nonlinear optical properties of chalcogenide glasses. Appl. Phys. Lett. 70, 925 (1997)

    Article  ADS  Google Scholar 

  25. L.H. Yan, J.H. Si, Y.Q. Yan, F. Chen, X. Hou, Pump power dependence of femtosecond two-color optical Kerr shutter measurements. Opt. Express 19, 11196 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61235003, 11474078 and 11674260), the Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2014JQ1024), the Research Fund for the Doctoral Program of Higher Education (Grant No. 20130201120025), and the Collaborative Innovation Center of Suzhou Nano Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhai Si.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, M., Si, J., Yan, L. et al. Time- and frequency-resolved determination of ultrafast energy transfer in optical Kerr measurements. Appl. Phys. B 123, 53 (2017). https://doi.org/10.1007/s00340-016-6629-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6629-z

Keywords

Navigation