Skip to main content
Log in

High-efficiency frequency upconversion of 1.5 μm laser based on a doubly resonant external ring cavity with a low finesse for signal field

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A doubly resonant external ring cavity with a low finesse for the signal field is used to improve the frequency upconversion efficiency of a weak 1583 nm signal laser to 636 nm by mixing with a resonance power enhanced 1064 nm pump laser in a 25 mm periodically poled lithium niobate crystal. The process of frequency upconversion is described and optimized by the doubly resonant cavity-enhanced sum frequency generation theory under the condition of undepleted pump approximation. By selecting the suitable reflectivity of the signal input mirror and the incident pump power, a cavity-enhanced frequency conversion efficiency of 94.6% was obtained for signal powers up to 25 mW with an input pump power of 780 mW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C.E. Vollmer, C. Baune, A. Sambilwski, T. Eberle, V. Händchen, J. Fiurášek, R. Schnabel, Phys. Rev. Lett. 112, 073602 (2014)

    Article  ADS  Google Scholar 

  2. Y. Kaneda, S. Kubota, Appl. Opt. 36, 7766 (1997)

    Article  ADS  Google Scholar 

  3. J.C. Bienfang, C.A. Denman, B.W. Grime, P.D. Hillman, G.T. Moore, J.M. Telle, Opt. Lett. 28, 2219 (2003)

    Article  ADS  Google Scholar 

  4. E. Mimoun, L.D. Sarlo, J.J. Zondy, J. Dalibard, F. Gerbier, Opt. Express 16, 18684 (2008)

    Article  ADS  Google Scholar 

  5. W. Tan, X. F. Fu, Z. X. Li, G. Zhao, X. J. Yan, W. G. Ma, L. Dong, L. Zhang, W. B. Yin, S. T. Jia, Acta Phys. Sin. 62, 094211 (2013)

    Google Scholar 

  6. A. Samblowski, C.E. Vollmer, C. Baune, J. Fiurášek, R. Schnabel, Opt. Lett. 39, 2979 (2014)

    Article  ADS  Google Scholar 

  7. H. Kumagai, K. Midorikawa, T. Iwane, M. Obara, Opt. Lett. 28, 1969 (2003)

    Article  ADS  Google Scholar 

  8. A.P. VanDevender, P.G. Kwiat, J. Opt. Soc. Am. B 24, 295 (2007)

    Article  ADS  Google Scholar 

  9. H. Pan, H. Dong, H. Zeng, Appl. Phys. Lett. 89, 191108 (2006)

    Article  ADS  Google Scholar 

  10. M.A. Albota, F.N.C. Wong, Opt. Lett. 29, 1449 (2004)

    Article  ADS  Google Scholar 

  11. R.V. Roussev, C. Langrock, J.R. Kurz, M.M. Fejer, Opt. Lett. 29, 1518 (2004)

    Article  ADS  Google Scholar 

  12. H. Cankaya, A.L. Calendron, H. Sucheowski, F.X. Kärtner, Opt. Lett. 39, 2912 (2014)

    Article  ADS  Google Scholar 

  13. T. Guerreiro, A. Martin, B. Sanguinetti, J. S. Pelc, C. Langrock, M. M. Fejer, N. Gisin, H. Zbinden, N. Sanfouard, R. T. Thew, Phys. Rev. Lett. 113, 173601(2014)

  14. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F. L. Hong, T. W. Hänsch, Opt. Express 17, 17792 (2009)

    Article  ADS  Google Scholar 

  15. I. Breunig Laser Photonics Rev. 10, 569 (2016)

    Article  Google Scholar 

  16. A. Rakhman, M. Notcutt, Y. Liu, Opt. Lett. 40, 5562 (2015)

    Article  ADS  Google Scholar 

  17. A.K. Hansen, P.E. Andersen, O.B. Jensen, B. Sumpf, G. Erbert, P.M. Petersen, Opt. Lett. 40, 5526 (2015)

    Article  ADS  Google Scholar 

  18. S. Arahira, H. Murai, Opt. Express 22, 12944 (2014)

    Article  ADS  Google Scholar 

  19. W.P. Risk, W.J. Kozlovsky, Opt. Lett. 17, 707 (1992)

    Article  ADS  Google Scholar 

  20. M. Watannbe, K. Hayakawa, H. Imajo, R. Ohmukai, S. Urabe, Jpn. J. Appl. Phys. Part 1. 33, 1599 (1994)

    Article  Google Scholar 

  21. W. Tan, X. D. Qiu, G. Zhao, J. J. Hou, M. Y. Jia, X. J. Yan, W. G. Ma, L. Zhang, L. Dong, W. B. Yin, L. T. Xiao, S. T. Jia, Acta Phys. Sin. 65, 074202 (2016)

    Google Scholar 

  22. M. Tawfieq, O.B. Jensen, A.K. Hansen, B. Sumpf, K. Paschke, P.E. Andersen, Opt. Commun 339, 137 (2015)

    Article  ADS  Google Scholar 

  23. H.Shapiro, N. J. Phys. 4, 47.1 (2002)

    Article  Google Scholar 

  24. G.T. Moore, IEEE J. Quantum Electron 38, 12 (2002)

    Article  ADS  Google Scholar 

  25. G.D. Boyd, D.A. Kleinman, J. Appl. Phys. 39, 3597 (1968)

    Article  ADS  Google Scholar 

  26. O. Gayer, Z. Sacks, E. Galum, A. Arie, Appl. Phys. B 91, 343 (2008)

    Article  ADS  Google Scholar 

  27. O.B. Jensen, P.M. Petersen, Appl. Phys. Lett. 103, 141107 (2013)

    Article  ADS  Google Scholar 

  28. J. Janousek, S. Johansson, P. Tidemand-Lichtenberg, S. Wang, J.L. Mortensen, P. Buchhave, F. Laurell, Opt. Express 13, 1188 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work was supported by the 973 program (Grant No. 2012CB921603), the National Natural Science Foundation of China (Grant Nos. 61675122, 61475093, 61404104, 61127017, 61178009, 61378047, 61275213, and 61205216), the Natural Science Foundation of Shanxi Province (Grant Nos. 2013021004-1, and 2012021022-1), the Shanxi Scholarship Council of China (2013-011, 2013-01), and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi. Weiguang Ma and Ove Axner would also like to acknowledge Umeå University’s program “Strong research environments” for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguang Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, W., Qiu, X., Zhao, G. et al. High-efficiency frequency upconversion of 1.5 μm laser based on a doubly resonant external ring cavity with a low finesse for signal field . Appl. Phys. B 123, 52 (2017). https://doi.org/10.1007/s00340-016-6626-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6626-2

Keywords

Navigation