A dense gas of laser-cooled atoms for hybrid atom–ion trapping

Abstract

We describe the realization of a dark spontaneous-force trap of rubidium atoms. The atoms are loaded from a beam provided by a two-dimensional magneto-optical trap yielding a capture efficiency of 75%. The dense and cold atomic sample is characterized by saturated absorption imaging. Up to \(10^9\) atoms are captured with a loading rate of \(3\times 10^9\) atoms/s into a cloud at a temperature of 250 \(\mu\)K with the density exceeding \(10^{11}\) atoms/cm\(^3\). Under steady-state conditions, more than 90% of the atoms can be prepared into the absolute atomic ground state, which provides favorable conditions for the investigation of sympathetic cooling of ions in a hybrid atom–ion trap.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    Wineland and Dehmelt independently proposed the same idea [2].

  2. 2.

    This extinction ratio was measured outside the vacuum chamber. The actual ratio might be reduced due to reflections from the wires of the ion trap.

References

  1. 1.

    T.W. Hänsch, A.L. Schawlow, Cooling of gases by laser radiation. Opt. Commun. 13, 68–69 (1975)

    ADS  Article  Google Scholar 

  2. 2.

    D. Wineland, H. Dehmelt, Proposed \(10^{14}\delta \nu <\nu\) laser fluorescence spectroscopy on TI\(^+\) mono-ion oscillator III, Bull. Am. Phys. Soc. 20, 637 (1975)

  3. 3.

    D.J. Wineland, R.E. Drullinger, F.L. Walls, Radiation-pressure cooling of bound resonant absorbers. Phys. Rev. Lett. 40, 1639–1642 (1978)

    ADS  Article  Google Scholar 

  4. 4.

    W. Neuhauser, M. Hohenstatt, P. Toschek, H. Dehmelt, Optical-sideband cooling of visible atom cloud confined in parabolic well. Phys. Rev. Lett. 41, 233–236 (1978)

    ADS  Article  Google Scholar 

  5. 5.

    A. Ashkin, Trapping of atoms by resonance radiation pressure. Phys. Rev. Lett. 40, 729–732 (1978)

    ADS  Article  Google Scholar 

  6. 6.

    W.D. Phillips, J.V. Prodan, in Cooling atoms with a frequency chirped laser, ed By V.L. Mandel, E. Wolf, Coherence and Quantum Optics V (Plenum, New York, 1984), p. 15

  7. 7.

    W. Ertmer, R. Blatt, J.L. Hall, M. Zhu, Laser manipulation of atomic beam velocities: demonstration of stopped atoms and velocity reversal. Phys. Rev. Lett. 54, 996–999 (1985)

    ADS  Article  Google Scholar 

  8. 8.

    W.D. Phillips, H. Metcalf, Laser deceleration of an atomic beam. Phys. Rev. Lett. 48, 596–599 (1982)

    ADS  Article  Google Scholar 

  9. 9.

    E.L. Raab, M. Prentiss, A. Cable, S. Chu, D.E. Pritchard, Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett. 59, 2631–2634 (1987)

    ADS  Article  Google Scholar 

  10. 10.

    C. Monroe, W. Swann, H. Robinson, C. Wieman, Very cold trapped atoms in a vapor cell. Phys. Rev. Lett. 65, 1571–1574 (1990)

    ADS  Article  Google Scholar 

  11. 11.

    M. Weidemüller, T. Esslinger, M.A. Ol’shanii, A. Hemmerich, T.W. Hänsch, A novel scheme for efficient cooling below the photon recoil limit. Europhys. Lett. 27(2), 109–114 (1994)

    ADS  Article  Google Scholar 

  12. 12.

    A. Hemmerich, M. Weidemüller, T. Hänsch, Four-wave mixing in a 3d optical lattice. Europhys. Lett. 27, 427–432 (1994)

    ADS  Article  Google Scholar 

  13. 13.

    A. Hemmerich, M. Weidemüller, T. Esslinger, C. Zimmermann, T.W. Hänsch, Trapping atoms in a dark optical lattice. Phys. Rev. Lett. 75, 37–40 (1995)

    ADS  Article  Google Scholar 

  14. 14.

    M. Weidemüller, A. Hemmerich, A. Görlitz, T. Esslinger, T.W. Hänsch, Bragg diffraction in an atomic lattice bound by light. Phys. Rev. Lett. 75, 4583–4586 (1995)

    ADS  Article  Google Scholar 

  15. 15.

    A. Görlitz, M. Weidemüller, T.W. Hänsch, A. Hemmerich, Observing the position spread of atomic wave packets. Phys. Rev. Lett. 78, 2096–2099 (1997)

    Article  Google Scholar 

  16. 16.

    M. Weidemüller, A. Görlitz, T. Hänsch, A. Hemmerich, Local and global properties of light-bound atomic lattices investigated by bragg diffraction. Phys. Rev. A 58, 4647–4661 (1998)

    ADS  Article  Google Scholar 

  17. 17.

    R.C. Bilodeau, H.K. Haugen, Experimental studies of Os-: observation of a bound-bound electric dipole transition in an atomic negative ion. Phys. Rev. Lett. 85, 534 (2000)

    ADS  Article  Google Scholar 

  18. 18.

    A. Kellerbauer, A. Fischer, U. Warring, Measurement of the zeeman effect in an atomic anion: prospects for laser cooling of Os-. Phys. Rev. A 89, 43430 (2014)

    ADS  Article  Google Scholar 

  19. 19.

    C.W. Walter, N.D. Gibson, D.J. Matyas, C. Crocker, K.A. Dungan, B.R. Matola, J. Rohlén, Candidate for laser cooling of a negative ion: observations of bound-bound transitions in La-. Phys. Rev. Lett. 113, 63001 (2014)

    ADS  Article  Google Scholar 

  20. 20.

    A. Kellerbauer, G. Cerchiari, E. Jordan, C.W. Walter, High-resolution laser spectroscopy on bound transitions in La-. Phys. Scr. 90, 54014 (2015)

    ADS  Article  Google Scholar 

  21. 21.

    D. Gerlich, Ion-neutral collisions in a 22-pole trap at very low energies. Phys. Scr. 1995, 256 (1995)

    Article  Google Scholar 

  22. 22.

    R. Wester, Radiofrequency multipole traps: tools for spectroscopy and dynamics of cold molecular ions. J. Phys. B At. Mol. Opt. Phys. 154001 (2009)

  23. 23.

    O.P. Makarov, R. Côté, H. Michels, W.W. Smith, Radiative charge-transfer lifetime of the excited state of NaCa+. Phys. Rev. A 67, 42705 (2003)

    ADS  Article  Google Scholar 

  24. 24.

    W.W. Smith, O.P. Makarov, J. Lin, Cold ion-neutral collisions in a hybrid trap. J. Mod. Opt. 52, 2253–2260 (2005)

    ADS  Article  Google Scholar 

  25. 25.

    E.R. Hudson, Method for producing ultracold molecular ions. Phys. Rev. A 79, 32716 (2009)

    ADS  Article  Google Scholar 

  26. 26.

    S. Willitsch, Ion–atom hybrid systems. ArXiv:1401.1699 (2014)

  27. 27.

    H.G. Dehmelt, Radiofrequency spectroscopy of stored ions. Adv. At. Mol. Phys. 3, 53–72 (1967)

    ADS  Article  Google Scholar 

  28. 28.

    C. Zipkes, L. Ratschbacher, C. Sias, M. Köhl, Kinetics of a single trapped ion in an ultracold buffer gas. New J. Phys. 13, 53020 (2011)

    Article  Google Scholar 

  29. 29.

    M. Cetina, A.T. Grier, V. Vuletic, Micromotion-induced limit to atom–ion sympathetic cooling in paul traps. Phys. Rev. Lett. 109, 253201 (2012)

    ADS  Article  Google Scholar 

  30. 30.

    K. Chen, S.T. Sullivan, E.R. Hudson, Neutral gas sympathetic cooling of an ion in a paul trap. Phys. Rev. Lett. 112, 143009 (2014)

    ADS  Article  Google Scholar 

  31. 31.

    B. Höltkemeier, P. Weckesser, H. López-Carrera, M. Weidemüller, Buffer-gas cooling of a single ion in a multipole radio frequency trap beyond the critical mass ratio. Phys. Rev. Lett. 116, 233003 (2016)

    ADS  Article  Google Scholar 

  32. 32.

    B. Höltkemeier, P. Weckesser, H. López-Carrera, M. Weidemüller, Dynamics of a single trapped ion immersed in a buffer gas. Phys. Rev. A 94, 062703 (2016)

    ADS  Article  Google Scholar 

  33. 33.

    J. Deiglmayr, A. Göritz, T. Best, M. Weidemüller, R. Wester, Reactive collisions of trapped anions with ultracold atoms. Phys. Rev. A 86, 43438 (2012)

    ADS  Article  Google Scholar 

  34. 34.

    W. Ketterle, K.B. Davis, M.A. Joffe, A. Martin, D.E. Pritchard, High densities of cold atoms in a dark spontaneous-force optical trap. Phys. Rev. Lett. 70, 2253–2256 (1993)

    ADS  Article  Google Scholar 

  35. 35.

    S. Weyers, E. Aucouturier, C. Valentin, N. Dimarcq, A continuous beam of cold cesium atoms extracted from a two-dimensional magneto-optical trap. Opt. Commun. 143, 30–34 (1997)

    ADS  Article  Google Scholar 

  36. 36.

    K. Dieckmann, R.J.C. Spreeuw, M. Weidemüller, J.T.M. Walraven, Two-dimensional magneto-optical trap as a source of slow atoms. Phys. Rev. A 58, 3891–3895 (1998)

    ADS  Article  Google Scholar 

  37. 37.

    K.M.F. Magalhaes, S.R. Muniz, G.D. Telles, P.W. Courteille, V.S. Bagnato, L.G. Marcassa, The escape velocity in a magneto-optical trap and its importance to trap loss investigation. Laser Phys. 12, 145–151 (2002)

    Google Scholar 

  38. 38.

    S. Götz, B. Höltkemeier, C.S. Hofmann, D. Litsch, B.D. DePaola, M. Weidemüller, Versatile cold atom target apparatus. Rev. Sci. Instrum. 83, 043107 (2012)

    Article  Google Scholar 

  39. 39.

    J. Ramirez-Serrano, N. Yu, J.M. Kohel, J.R. Kellogg, L. Maleki, Multistage two-dimensional magneto-optical trap as a compact cold atom beam source. Opt. Lett. 31, 682–684 (2006)

    ADS  Article  Google Scholar 

  40. 40.

    P. Berthoud, A. Joyet, G. Dudle, N. Sagna, P. Thomann, A continuous beam of slow, cold cesium atoms magnetically extracted from a 2d magneto-optical trap. Europhys. Lett. 41, 141 (1998)

    ADS  Article  Google Scholar 

  41. 41.

    J. Schoser, A. Batär, R. Löw, V. Schweikhard, A. Grabowski, Y.B. Ovchinnikov, T. Pfau, Intense source of cold Rb atoms from a pure two-dimensional magneto-optical trap. Phys. Rev. A 66, 23410 (2002)

    ADS  Article  Google Scholar 

  42. 42.

    J. Catani, P. Maioli, L. De Sarlo, F. Minardi, M. Inguscio, Intense slow beams of bosonic potassium isotopes. Phys. Rev. A 73, 33415 (2006)

    ADS  Article  Google Scholar 

  43. 43.

    T.G. Tiecke, S.D. Gensemer, A. Ludewig, J.T.M. Walraven, High-flux two-dimensional magneto-optical-trap source for cold lithium atoms. Phys. Rev. A 80, 13409 (2009)

    ADS  Article  Google Scholar 

  44. 44.

    T. Walker, D. Sesko, C. Wieman, Collective behavior of optically trapped neutral atoms. Phys. Rev. Lett. 64, 408–411 (1990)

    ADS  Article  Google Scholar 

  45. 45.

    C.G. Townsend, N.H. Edwards, C.J. Cooper, K.P. Zetie, C.J. Foot, A.M. Steane, P. Szriftgiser, H. Perrin, J. Dalibard, Phase-space density in the magneto-optical trap. Phys. Rev. A 52, 1423–1440 (1995)

    ADS  Article  Google Scholar 

  46. 46.

    D.W. Sesko, T.G. Walker, C.E. Wieman, Behavior of neutral atoms in a spontaneous force trap. J. Opt. Soc. Am. B 8, 946 (1991)

    ADS  Article  Google Scholar 

  47. 47.

    W. Petrich, M.H. Anderson, J.R. Ensher, E.A. Cornell, Behavior of atoms in a compressed magneto-optical trap. J. Opt. Soc. Am. B 11, 1332 (1994)

    ADS  Article  Google Scholar 

  48. 48.

    C. Townsend, N. Edwards, K. Zetie, C. Cooper, J. Rink, C. Foot, High-density trapping of cesium atoms in a dark magneto-optical trap. Phys. Rev. A 53, 1702–1714 (1996)

    ADS  Article  Google Scholar 

  49. 49.

    W. Ketterle, D.S.S. Durfee, D.M.M. Stamper-Kurn, Making, probing and understanding Bose–Einstein condensates. ArXiv:cond-mat/9904034(1999)

  50. 50.

    G. Reinaudi, T. Lahaye, Z. Wang, D. Guéry-Odelin, Strong saturation absorption imaging of dense clouds of ultracold atoms. Opt. Lett. 32, 3143–3145 (2007)

    ADS  Article  Google Scholar 

  51. 51.

    W. Kwon, J. Choi, Y. Shin, Calibration of saturation absorption imaging of ultracold atom clouds. J. Korean Phys. Soc. 61, 1970–1974 (2012)

    ADS  Article  Google Scholar 

  52. 52.

    L.D. Turner, K.P. Weber, D. Paganin, R.E. Scholten, Off-resonant defocus-contrast imaging of cold atoms. Opt. Lett. 29, 232–234 (2004)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Heidelberg Center for Quantum Dynamics and the BMBF under contract number 05P12VHFA6. B.H. acknowledges support by HGSHire.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matthias Weidemüller.

Additional information

This article is part of the topical collection “Enlightening the World with the Laser” - Honoring T. W. Hänsch guest edited by Tilman Esslinger, Nathalie Picqué, and Thomas Udem.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Höltkemeier, B., Glässel, J., López-Carrera, H. et al. A dense gas of laser-cooled atoms for hybrid atom–ion trapping. Appl. Phys. B 123, 51 (2017). https://doi.org/10.1007/s00340-016-6624-4

Download citation

Keywords

  • Probe Beam
  • Dark Spot
  • Atom Beam
  • Atom Cloud
  • Absorption Imaging