Skip to main content
Log in

Sensitivity and resolution in frequency comb spectroscopy of buffer gas cooled polyatomic molecules

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We discuss the use of cavity-enhanced direct frequency comb spectroscopy in the mid-infrared region with buffer gas cooling of polyatomic molecules for high-precision rovibrational absorption spectroscopy. A frequency comb coupled to an optical enhancement cavity allows us to collect high-resolution, broad-bandwidth infrared spectra of translationally and rotationally cold (10–20 K) gas-phase molecules with high absorption sensitivity and fast acquisition times. The design and performance of the combined apparatus are discussed in detail. Recorded rovibrational spectra in the CH stretching region of several organic molecules, including vinyl bromide (CH\(_2\)CHBr), adamantane (C\(_{10}\)H\(_{16}\)), and diamantane (C\(_{14}\)H\(_{20}\)) demonstrate the resolution and sensitivity of this technique, as well as the intrinsic challenges faced in extending the frontier of high-resolution spectroscopy to large complex molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Udem, R. Holzwarth, T.W. Hänsch, Optical frequency metrology. Nature 416, 233–237 (2002)

    Article  ADS  Google Scholar 

  2. S.T. Cundiff, J. Ye, Colloquium : femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003)

    Article  ADS  Google Scholar 

  3. M.C. Stowe, M.J. Thorpe, A. Pe’er, J. Ye, J.E. Stalnaker, V. Gerginov, S.A. Diddams, Direct frequency comb spectroscopy. Adv. At. Mol. Opt. Phys. 55, 1–60 (2008)

    Article  ADS  Google Scholar 

  4. M. Thorpe, J. Ye, Cavity-enhanced direct frequency comb spectroscopy. Appl. Phys. B 91, 397–414 (2008)

    Article  ADS  Google Scholar 

  5. F. Adler, M.J. Thorpe, K.C. Cossel, J. Ye, Cavity-enhanced direct frequency comb spectroscopy: technology and applications. Annu. Rev. Anal. Chem. 3, 175–205 (2010)

    Article  Google Scholar 

  6. A. Foltynowicz, P. Masłowski, A.J. Fleisher, B.J. Bjork, J. Ye, Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide. Appl. Phys. B 110, 163–175 (2012)

    Article  ADS  Google Scholar 

  7. A.J. Fleisher, B.J. Bjork, T.Q. Bui, K.C. Cossel, M. Okumura, J. Ye, Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals. J. Phys. Chem. Lett. 5, 2241–2246 (2014)

    Article  Google Scholar 

  8. B. Spaun, P.B. Changala, D. Patterson, B.J. Bjork, O.H. Heckl, J.M. Doyle, J. Ye, Continuous probing of cold complex molecules with infrared frequency comb spectroscopy. Nature 533, 517–520 (2016)

    Article  ADS  Google Scholar 

  9. S. Davis, D.T. Anderson, G. Duxbury, D.J. Nesbitt, Jet-cooled molecular radicals in slit supersonic discharges: Sub-Doppler infrared studies of methyl radical. J. Chem. Phys. 107, 5661 (1997)

    Article  ADS  Google Scholar 

  10. B.E. Brumfield, J.T. Stewart, B.J. McCall, Extending the limits of rotationally resolved absorption spectroscopy: pyrene. J. Phys. Chem. Lett. 3, 1985–1988 (2012)

    Article  Google Scholar 

  11. J.K. Messer, F.C. De Lucia, Measurement of pressure-broadening parameters for the CO-He system at 4 K. Phys. Rev. Lett. 53, 2555–2558 (1984)

    Article  ADS  Google Scholar 

  12. D. Patterson, E. Tsikata, J.M. Doyle, Cooling and collisions of large gas phase molecules. Phys. Chem. Chem. Phys. 12, 9736–9741 (2010)

    Article  Google Scholar 

  13. D. Patterson, J.M. Doyle, Cooling molecules in a cell for FTMW spectroscopy. Mol. Phys. 110, 1757–1766 (2012)

    Article  ADS  Google Scholar 

  14. J. Piskorski, D. Patterson, S. Eibenberger, J.M. Doyle, Cooling, spectroscopy and non-sticking of trans-stilbene and Nile Red. Chemphyschem 15, 3800–4 (2014)

    Article  Google Scholar 

  15. D.J. Nesbitt, R.W. Field, Vibrational energy flow in highly excited molecules: role of intramolecular vibrational redistribution. J. Phys. Chem. 100, 12735–12756 (1996)

    Article  Google Scholar 

  16. F. Adler, K.C. Cossel, M.J. Thorpe, I. Hartl, M.E. Fermann, J. Ye, Phase-stabilized, 1.5 W frequency comb at 2.8\(-\)4.8 \(\mu\)m. Opt. Lett. 34, 1330 (2009)

    Article  ADS  Google Scholar 

  17. G.D. Cole, W. Zhang, B.J. Bjork, D. Follman, P. Heu, C. Deutsch, L. Sonderhouse, J. Robinson, C. Franz, A. Alexandrovski, M. Notcutt, O.H. Heckl, J. Ye, M. Aspelmeyer, High-performance near- and mid-infrared crystalline coatings. Optica 3, 647 (2016)

    Article  Google Scholar 

  18. J. Mandon, G. Guelachvili, N. Picqué, Fourier transform spectroscopy with a laser frequency comb. Nat. Photon. 3, 99–102 (2009)

    Article  ADS  Google Scholar 

  19. F. Adler, P. Masłowski, A. Foltynowicz, K.C. Cossel, T.C. Briles, I. Hartl, J. Ye, Mid-infrared Fourier transform spectroscopy with a broadband frequency comb. Opt. Express 18, 21861–72 (2010)

    Article  ADS  Google Scholar 

  20. L. Nugent-Glandorf, T. Neely, F. Adler, A.J. Fleisher, K.C. Cossel, B. Bjork, T. Dinneen, J. Ye, S.A. Diddams, Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection. Opt. Lett. 37, 3285 (2012)

    Article  ADS  Google Scholar 

  21. P. Maslowski, K.F. Lee, A.C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski, A.A. Mills, C. Mohr, J. Jiang, M.E. Fermann, A. Foltynowicz, Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs. Phys. Rev. A 93, 021802 (2016)

    Article  ADS  Google Scholar 

  22. D. McKean, CH stretching frequencies, bond lengths and strengths in halogenated ethylenes. Spectrochim. Acta Part A Mol. Spectrosc. 31, 1167–1186 (1975)

    Article  ADS  Google Scholar 

  23. N. Zvereva-Loëte, J. Demaison, H. Rudolph, Ab initio anharmonic force field and equilibrium structure of vinyl bromide. J. Mol. Spectrosc. 236, 248–254 (2006)

    Article  ADS  Google Scholar 

  24. D. de Kerckhove Varent, Contribution a l’etude de la molecule de bromure de vinyle en spectroscopie hertzienne. II. Bromure de vinyle monodeutere et substitue en 13C, second ordre du couplage quadripolaire, structure de la molecule. Ann. Soc. Sci. Brux. T84, 277–292 (1970)

    Google Scholar 

  25. A. Pietropolli Charmet, P. Stoppa, A. Baldacci, S. Giorgianni, S. Ghersetti, Diode laser spectrum and rovibrational study of the \(\nu _6\) fundamental of vinyl bromide. J. Mol. Struct. 612, 213–221 (2002)

    Article  ADS  Google Scholar 

  26. M. Hayashi, C. Ikeda, T. Inagusa, Microwave spectrum, structure, and nuclear quadrupole coupling constant tensor of vinyl bromide and iodide. J. Mol. Spectrosc. 139, 299–312 (1990)

    Article  ADS  Google Scholar 

  27. PGOPHER, A program for simulating rotational, vibrational and electronic spectra, C. M. Western, University of Bristol. http://pgopher.chm.bris.ac.uk

  28. O. Pirali, V. Boudon, J. Oomens, M. Vervloet, Rotationally resolved infrared spectroscopy of adamantane. J. Chem. Phys. 136, 024310 (2012)

    Article  ADS  Google Scholar 

  29. J. Oomens, N. Polfer, O. Pirali, Y. Ueno, R. Maboudian, P.W. May, J. Filik, J.E. Dahl, S. Liu, R.M. Carlson, Infrared spectroscopic investigation of higher diamondoids. J. Mol. Spectrosc. 238, 158–167 (2006)

    Article  ADS  Google Scholar 

  30. T. Baer, W.L. Hase, Unimolecular Reaction Dynamics (Oxford University Press, New York, 1996)

    Google Scholar 

  31. B.S. Hudson, D.G. Allis, S.F. Parker, A.J. Ramirez-Cuesta, H. Herman, H. Prinzbach, Infrared, Raman, and inelastic neutron scattering spectra of dodecahedrane: an I(h) molecule in T(h) site symmetry. J. Phys. Chem. A 109, 3418–24 (2005)

    Article  Google Scholar 

  32. S.K. Tokunaga, R.J. Hendricks, M.R. Tarbutt, B. Darquié, High-resolution mid-infrared spectroscopy of buffer-gas-cooled methyltrioxorhenium molecules (2016), arXiv:1607.08741

  33. S.M. Foreman, D.J. Jones, J. Ye, Flexible and rapidly configurable femtosecond pulse generation in the mid-IR. Opt. Lett. 28, 370 (2003)

    Article  ADS  Google Scholar 

  34. A. Ruehl, A. Gambetta, I. Hartl, M.E. Fermann, K.S.E. Eikema, M. Marangoni, Widely-tunable mid-infrared frequency comb source based on difference frequency generation. Opt. Lett. 37, 2232 (2012)

    Article  ADS  Google Scholar 

  35. A. Gambetta, N. Coluccelli, M. Cassinerio, D. Gatti, P. Laporta, G. Galzerano, M. Marangoni, Milliwatt-level frequency combs in the \(8-14\) \(\mu\)m range via difference frequency generation from an Er:fiber oscillator. Opt. Lett. 38, 1155 (2013)

    Article  ADS  Google Scholar 

  36. Q.Y. Lu, M. Razeghi, S. Slivken, N. Bandyopadhyay, Y. Bai, W.J. Zhou, M. Chen, D. Heydari, A. Haddadi, R. McClintock, M. Amanti, C. Sirtori, High power frequency comb based on mid-infrared quantum cascade laser at \(\lambda \sim 9 \mu\)m. Appl. Phys. Lett. 106, 051105 (2015)

    Article  ADS  Google Scholar 

  37. K.F. Lee, C.J. Hensley, P.G. Schunemann, M.E. Fermann, Difference frequency generation in orientation-patterned gallium phosphide. In Conf. Lasers Electro-Optics, page STu1Q.3. OSA, Washington, D.C. (2016). ISBN 978-1-943580-11-8

Download references

Acknowledgements

We dedicate this paper to Ted Hänsch, who has pioneered the field of laser spectroscopy in general and optical frequency combs in particular. This research was funded by DARPA SCOUT, AFOSR, NIST, and NSF-JILA PFC. P.B.C. is supported by the NSF GRFP (Award no. DGE1144083). B.S. is supported through an NRC Postdoctoral Fellowship. D.P. and J.M.D. acknowledge additional support from the NSF. We would like to thank Matthew Radzihovsky for experimental assistance at JILA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bryan Changala.

Additional information

This article is part of the topical collection “Enlightening the World with the Laser” - Honoring T. W. Hänsch guest edited by Tilman Esslinger, Nathalie Picqué, and Thomas Udem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Changala, P.B., Spaun, B., Patterson, D. et al. Sensitivity and resolution in frequency comb spectroscopy of buffer gas cooled polyatomic molecules . Appl. Phys. B 122, 292 (2016). https://doi.org/10.1007/s00340-016-6569-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6569-7

Keywords

Navigation