Applied Physics B

, 122:295 | Cite as

Ranging with frequency-shifted feedback lasers: from \(\upmu\)m-range accuracy to MHz-range measurement rate

  • J. I. Kim
  • V. V. Ogurtsov
  • G. Bonnet
  • L. P. YatsenkoEmail author
  • K. Bergmann
Part of the following topical collections:
  1. “Enlightening the World with the Laser” - Honoring T. W. Hänsch


We report results on ranging based on frequency-shifted feedback (FSF) lasers with two different implementations: (1) An Ytterbium-fiber system for measurements in an industrial environment with accuracy of the order of 1 \(\upmu \hbox {m}\), achievable over a distance of the order of meters with potential to reach an accuracy of better than 100 nm; (2) A semiconductor laser system for a high rate of measurements with an accuracy of 2 mm @ 1 MHz or 75 \(\upmu \hbox {m}\) @ 1 kHz and a limit of the accuracy of \(\ge\)10 \(\upmu \hbox {m}\). In both implementations, the distances information is derived from a frequency measurement. The method is therefore insensitive to detrimental influence of ambient light. For the Ytterbium-fiber system, a key feature is the injection of a single-frequency laser, phase modulated at variable frequency \(\varOmega\), into the FSF-laser cavity. The frequency \(\varOmega _\mathrm{{max}}\) at which the detector signal is maximal yields the distance. The semiconductor FSF-laser system operates without external injection seeding. In this case, the key feature is frequency counting that allows convenient choice of either accuracy or speed of measurements simply by changing the duration of the interval during which the frequency is measured by counting .


Gain Medium Frequency Comb Michelson Interferometer Gate Time Reference Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge support from the German “Bundesministerium für Bildung und Forschung” (BMBF) under the projects numbered 13-N-9345 and 13-N-9346. K.B. acknowledges additional support from the research center OPTIMAS of the state of Rhineland-Palatinate. We also thank B.W.Shore for carefully reading the manuscript.


  1. 1.
    L.P. Yatsenko, B.W. Shore, K. Bergmann, Ranging and interferometry with a frequency shifted feedback laser. Opt. Commun. 242, 581–598 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    L.P. Yatsenko, B.W. Shore, K. Bergmann, An intuitive picture of optical ranging using frequency shifted feedback lasers seeded by a phase modulated field. Opt. Commun. 282, 2212–2216 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    V.V. Ogurtsov, L.P. Yatsenko, V.M. Khodakovskyy, B.W. Shore, G. Bonnet, K. Bergmann, High accuracy ranging with \(\text{ Yb }^{3+}\)-doped fiber-ring frequency-shifted feedback laser with phase-modulated seed. Opt. Commun. 266, 266–273 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    V.V. Ogurtsov, V.M. Khodakovsky, L.P. Yatsenko, G. Bonnet, B.W. Shore, K. Bergmann, An all-fiber frequency-shifted feedback laser for optical ranging; signal variation with distance. Opt. Commun. 281, 1679–1685 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    T.W. Hänsch, Nobel lecture: passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    W. Streifer, J.R. Whinnery, Analysis of a dye laser using the acousto-optic filter. Appl. Phys. Lett. 17, 335–337 (1970)ADSCrossRefGoogle Scholar
  7. 7.
    D.J. Taylor, S.E. Harris, S.T.K. Nieh, T.W. Hänsch, Electronic tuning of a dye laser using the acousto-optic filter. Appl. Phys. Lett. 19, 269–271 (1971)ADSCrossRefGoogle Scholar
  8. 8.
    F.V. Kowalski, J.A. Squier, J.T. Pinckney, Pulse generation with an acousto-optic frequency shifter in a passive cavity. Appl. Phys. Lett. 50, 711–713 (1987)ADSCrossRefGoogle Scholar
  9. 9.
    F.V. Kowalski, S.J. Shattil, P.D. Hale, Optical pulse generation with a frequency shifted feedback laser. Appl. Phys. Lett. 53, 734–736 (1988)ADSCrossRefGoogle Scholar
  10. 10.
    G. Bonnet, S. Balle, T. Kraft, K. Bergmann, Dynamics and self-modelocking of a titanium-sapphire laser with intracavity frequency shifted feedback. Opt. Commun. 123, 790–800 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    F.V. Kowalski, P.D. Hale, S.J. Shattil, Broadband continuous-wave laser. Opt. Lett. 13, 622–624 (1988)ADSCrossRefGoogle Scholar
  12. 12.
    P.D. Hale, F.V. Kowalski, Output characterization of a frequency shifted feedback laser: theory and experiment. IEEE J. Quant. Electron. 26, 1845–1851 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    I.C.M. Littler, S. Balle, K. Bergmann, Continuous-wave laser without frequency-domain-mode structure: investigation of emission properties and build-up dynamics. J. Opt. Soc. Am. B 8, 1412–1420 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    I.C.M. Littler, S. Balle, K. Bergmann, The cw modeless laser: spectral control, performance data and build-up dynamics. Opt. Commun. 88, 514–522 (1992)ADSCrossRefGoogle Scholar
  15. 15.
    S. Balle, F.V. Kowalski, K. Bergmann, Frequency shifted feedback dye laser operating at a small shift frequency. Opt. Commun. 102, 166–174 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    F.V. Kowalski, S. Balle, I.C.M. Littler, K. Bergmann, Lasers with internal frequency-shifted feedback. Opt. Eng. 33, 1146–1151 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    K. Nakamura, F. Abe, K. Kasahara, T. Hara, M. Sato, H. Ito, Spectral characteristics of an all solid-state frequency-shifted feedback laser. IEEE J. Quant. Electron. 33, 103–111 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    K. Nakamura, T. Miyahara, H. Ito, Observation of a highly phase-correlated chirped frequency comb output from a frequency-shifted feedback laser. Appl. Phys. Lett. 72, 2631–2633 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    P.I. Richter, L. Jakab, T.W. Hänsch, N. Adoph, A cw dye-laser tuned by an acoustooptic filter. Opt. Commun. 84, 159–161 (1991)ADSCrossRefGoogle Scholar
  20. 20.
    P.I. Richter, T.W. Hänsch, Diode lasers in external cavities with frequency-shifted feedback. Opt. Commun. 85, 414–418 (1991)ADSCrossRefGoogle Scholar
  21. 21.
    H. Sabert, E. Brinkmeyer, Pulse generation in fiber lasers with frequency shifted feedback. J. Lightwave Technol. 12, 1360–1368 (1994)ADSCrossRefGoogle Scholar
  22. 22.
    M. Stellpflug, G. Bonnet, B.W. Shore, K. Bergmann, Dynamics of frequency shifted feedback lasers: simulation studies. Opt. Express 11, 2060–2080 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    J.-N. Maran, P. Besnard, S. LaRochelle, Theoretical analysis of a pulsed regime observed with a frequency-shifted-feedback fiber laser. J. Opt. Soc. Am. B 23, 1302–1311 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    J. Martin, Y. Zhao, S. Balle, M.P. Fewell, K. Bergmann, Visible-wavelength diode laser with weak frequency-shifted optical feedback. Opt. Commun. 112, 109–121 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    L.A. Vazquez-Zuniga, Y. Jeong, Study of a mode-locked erbium-doped frequency-shifted-feedback fiber laser incorporating a broad bandpass filter: Experimental results. Opt. Commun. 306, 1–8 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    L.A. Vazquez-Zuniga, Y. Jeong, Study of a mode-locked erbium-doped frequency-shifted-feedback fiber laser incorporating a broad bandpass filter: numerical results. Opt. Commun. 322, 54–60 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    H. Chen, S.P. Chen, Z.F. Jiang, J. Hou, Diversified pulse generation from frequency shifted feedback Tm-doped fibre lasers. Sci. Rep. 6, 26431 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    C. Ndiaye, T. Hara, F.V. Kowalski, H. Ito, Spectral characteristics of a frequency-shifted feedback ring laser using a semiconductor optical amplifier. Jpn. J. Appl. Phys. 47, 3483–3485 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    M. Sellahi, M. Myara, G. Beaudoin, I. Sagnes, A. Garnache, Highly coherent modeless broadband semiconductor laser. Opt. Lett. 40, 4301–4304 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    L.P. Yatsenko, B.W. Shore, K. Bergmann, Theory of a frequency shifted feedback laser. Opt. Commun. 236, 183–202 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    L.P. Yatsenko, B.W. Shore, K. Bergmann, Coherence in the output spectrum of frequency shifted feedback lasers. Opt. Commun. 282, 300–309 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    H.G. de Chatellusand, J.P. Pique, Coherence properties of modeless lasers. PoS 9, 1 (2009)Google Scholar
  33. 33.
    H.G. de Chatellusand, J.P. Pique, Statistical properties of frequency shifted feedback lasers. Opt. Commun. 283, 71–77 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    H.G. de Chatellus, E. Lacot, W. Glastre, O. Jacquin, O. Hugon, The hypothesis of the moving comb in frequency shifted feedback lasers. Opt. Commun. 284, 4965–4970 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    H.G. de Chatellus, E. Lacot, W. Glastre, O. Jacquin, O. Hugon, Theory of Talbot lasers. Phys. Rev. A 88, 033828 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    J.P. Pique, Pulsed frequency shifted feedback laser for accurate long distance measurements: beat order determination. Opt. Commun. 286, 233–238 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    H.G. de Chatellus, O. Jacquin, O. Hugon, E. Lacot, Quiet broadband light. Phys. Rev. A 90, 033810 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    H.G. de Chatellus, L.R. Cortés, J. Azaña, Optical real-time Fourier transformation with kilohertz resolutions. Optica 3(1), 1–8 (2016)CrossRefGoogle Scholar
  39. 39.
    I.C.M. Littler, H.-M. Keller, U. Gaubatz, K. Bergmann, Velocity control and cooling of an atomic-beam using a modeless laser. Z. Phys. D18, 307–308 (1991)ADSGoogle Scholar
  40. 40.
    J. Hoffnagle, Proposal for continuous white-light cooling of an atomic beam. Opt. Lett. 13, 102–104 (1988)ADSCrossRefGoogle Scholar
  41. 41.
    D.T. Mugglin, A.D. Streater, S. Balle, K. Bergmann, Observation of white light-induced drift separation of Rb isotopes. Opt. Commun. 104, 165–174 (1993)ADSCrossRefGoogle Scholar
  42. 42.
    J.R.M. Barr, G.Y. Young, M.W. Phillipe, Accurate optical frequency-interval measurement by use of nonresonant frequency comb generation. Opt. Lett. 18, 1010–1012 (1993)ADSCrossRefGoogle Scholar
  43. 43.
    M.J. Lim, C.I. Sukenik, T.H. Stiefvater, P.H. Bucksbaum, R.S. Conti, Improved design of a frequency-shifted feedback diode laser for optical pumping at high magentic field optics. Opt. Commun. 147, 99–102 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    M. Cashen, V. Bretin, H. Metcalf, Optical pumping in \(^{4}\text{ He }^{*}\) with frequency-shifted feedback amplification of light. JOSA B17, 530–533 (2000)ADSCrossRefGoogle Scholar
  45. 45.
    J.-P. Pique, S. Farinotti, Efficient modeless laser for a mesospheric sodium laser guide star. JOSA B20, 2093–2101 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    F. Marc, I.C. Moldovan, H.G. de Chatellus, J.P. Pique, High power modeless lasers for sodium laser guide stars. Ann. Phys. 32, 83–85 (2007)CrossRefGoogle Scholar
  47. 47.
    J.-P. Pique, V. Fesquet, S. Jacob, Pulsed frequency-shifted feedback laser for laser guide stars: intracavity preamplifier. Appl. Opt. 50, 6294–6301 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    V.I. Romanenko, A.V. Romanenko, L.P. Yatsenko, G.A. Kazakov, A.N. Litvinov, B.G. Matisov, Y.V. Rozhdestvensky, Dark resonances in the field of frequency-shifted feedback laser radiation. J. Phys. B 43, 215402 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    S. Balle, K. Bergmann, Self-pulsing and instabilities in a unidirectional ring dye laser with intracavity frequency shift. Opt. Commun. 116, 136–142 (1995)ADSCrossRefGoogle Scholar
  50. 50.
    H.G. de Chatellus, O. Jacquin, O. Hugon, W. Glastre, E. Lacot, J. Marklof, Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers. Opt. Express 21, 15065–15074 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    M.P. Nikodem, E. Kluzniak, K. Abramski, Wavelength tunability and pulse duration control in frequency shifted feedback Er-doped fiber laser. Opt. Express 17, 3299–3304 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    M.P. Nikodem, K. Abramski, Controlling the frequency of the frequency-shifted feedback fiber laser using injection-seeding technique. Opt. Commun. 283, 2202–2205 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    A. Lyakh, R. Barron-Jimenez, I. Dunayevskiy, R. Go, E. Tsvid, C.K.N. Patel, Progress in rapidly-tunable external cavity quantum cascade lasers with a frequency-shifted feedback. Photonics 3, 19 (2016)CrossRefGoogle Scholar
  54. 54.
    H. Zhang, M. Brunel, M. Romanelli, M. Vallet, Green pulsed lidar-radar emitter based on a multipass frequency-shifting external cavity. Appl. Opt. 55, 2467–2473 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, M. Rioux, Laser ranging: a critical review of usual techniques for distance measurement. Opt. Eng. 40, 10–19 (2001)ADSCrossRefGoogle Scholar
  56. 56.
    P. de Groot, Unusual techniques for absolute distance measurement. Opt. Eng. 40, 28–32 (2001)ADSCrossRefGoogle Scholar
  57. 57.
    J. Geng, Structered-light 3D surface imaging. Adv. Opt. Photon. 3, 128–160 (2011)CrossRefGoogle Scholar
  58. 58.
    G. Berkovic, E. Shafir, Optical methods for distance and displacement measurements. Adv. Opt. Photon. 4, 441–471 (2012)CrossRefGoogle Scholar
  59. 59.
    P.J. Delfyett, D. Mandridis, M.U. Piracha, D. Nguyen, K. Kim, S. Lee, Chirped pulse laser sources and applications. Prog. Quant. Electron. 36, 475–540 (2012)ADSCrossRefGoogle Scholar
  60. 60.
    I. Coddington, W.C. Swann, L. Nenadovic, N.R. Newbury, Rapid and precise absolute distance measurements at long range. Nat. Photon. 3, 352–356 (2009)ADSCrossRefGoogle Scholar
  61. 61.
    J. Lee, Y.-J. Kim, K. Lee, S. Lee, S.-W. Kim, Time-of-flight measurement with femtosecond light pulses. Nat. Photon. 4, 716–720 (2010)ADSCrossRefGoogle Scholar
  62. 62.
    S.A. van den Berg, S.T. Persijn, G.J.P. Kok, M.G. Zeiouny, N. Bhattacharya, Many-wavelength interferometry with thousands of lasers for absolute distancemeasurement. Phys. Rev. Lett. 108, 183901 (2012)ADSCrossRefGoogle Scholar
  63. 63.
    E. Baumann, F.R. Giorgetta, J.D. Deschênes, W.C. Swann, I. Coddington, N.R. Newbury, Comb-calibrated laser ranging for three-dimensional surface profiling with micrometer-level precision at a distance. Opt. Express 22, 24914–24928 (2014)ADSCrossRefGoogle Scholar
  64. 64.
    Y. Liang, J. Huang, M. Ren, B. Feng, X. Chen, E. Wu, G. Wu, H. Zeng, 1550-nm time-of-flight ranging system employing laser with multiple repetition rates for reducing the range ambiguity. Opt. Express 22, 4662–4670 (2014)ADSCrossRefGoogle Scholar
  65. 65.
    R. Yang, F. Pollinger, K. Meiners-Hagen, M. Krystek, J. Tan, H. Bosse, Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection. Meas. Sci. Technol. 26, 084001 (2015)ADSCrossRefGoogle Scholar
  66. 66.
    S.A. van den Berg, S. van Eldik, N. Bhattacharya, Mode-resolved frequency comb interferometry for high-accuracy long distance measurement. Sci. Rep. 5, 14661 (2015). doi: 10.1038/srep14661
  67. 67.
    Y.S. Jang, G. Wang, S. Hyun, H.J. Kang, B.J. Chun, Y.J. Kim, S.W. Kim, Comb-referenced laser distance interferometer for industrial nanotechnology. Sci. Rep. 6, 31770 (2016). doi: 10.1038/srep31770
  68. 68.
    D.J. Webb, R.M. Taylor, J.D.C. Jones, D.A. Jackson, Interferometric optical path difference measurement using sinusoidal frequency modulation of a diode laser. Opt. Commun. 66, 245–247 (1988)ADSCrossRefGoogle Scholar
  69. 69.
    K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, H. Ito, Optical frequency domain ranging by a frequency-shifted feedback laser. IEEE J. Quant. Electron. 36, 305–316 (2000)ADSCrossRefGoogle Scholar
  70. 70.
    H. Ito, T. Hara, C. Ndiaye, Frequency-shifted-feedback laser for precise remote 3D measurement for industry applications. Rev. Laser Eng. Suppl. 2008(36), 1038–1041 (2008)CrossRefGoogle Scholar
  71. 71.
    C. Ndiaye, T. Hara, H. Ito, Performance of a solid-state frequency-shifted feedback laser in optical ranging. JEOS: RP 4, 09010 (2009)ADSCrossRefGoogle Scholar
  72. 72.
    S. Umemoto, M. Fujii, N. Miyamoto, T. Okamoto, T. Hara, H. Ito, Y. Fujino, Deflection measurement for bridges with frequency-shifted feedback laser. in Proceedings of the Bridge Maintenance, Safety, Management and Life-cycle Optimization, pp. 2570–2574 (2010)Google Scholar
  73. 73.
    V.V. Ogurtsov, L.P. Yatensko, V.M. Khodakovskyy, B.W. Shore, G. Bonnet, K. Bergmann, Experimental characterization of an \(\text{ Yb }^{3+}\)-doped fiber ring laser with frequency-shifted feedback. Opt. Commun. 266, 627–637 (2006)ADSCrossRefGoogle Scholar
  74. 74.
    K.A. Shore, D.M. Kane, Optimum modulation frequency for FM seeded FSF laser ranging. IEEE Proc.-Optoelectron. 153, 284–286 (2006)CrossRefGoogle Scholar
  75. 75.
    M.F. Brandl, O.D. Mücke, Narrow-linewidth chirped frequency comb from a frequency-shifted feedback Ti: sapphire laser seeded by a phase-modulated single-frequency fiber laser. Opt. Lett. 35, 4223–4225 (2010)Google Scholar
  76. 76.
    J. Paul, Y. Hong, P.S. Spencer, I. Pierce, K.A. Shore, Simple and accurate optical frequency domain ranging using off-the-shelf dfb lasers subject to frequency-shifted optical feedback. IEEE Photon. Technol. Lett. 19, 1708–1710 (2007)ADSCrossRefGoogle Scholar
  77. 77.
    J. Paul, Y. Hong, P.S. Spencer, I. Pierce, K.A. Shore, Optical frequency-domain ranging using a frequency-shifted feedback distributed-feedback laser. IET Optoelectron 1, 277–279 (2007)CrossRefGoogle Scholar
  78. 78.
    A. Dieckmann, M. Amann, Frequency modulated continous-wave lidar. SPIE Proc. 2271, 134 (1994)ADSCrossRefGoogle Scholar
  79. 79.
    A.B. Mateo, Z.W. Barber, Precision and accuracy testing of FMCW ladar-based length metrology. Appl. Opt. 54, 6019–6024 (2015)ADSCrossRefGoogle Scholar
  80. 80.
    K. Bergmann, L.P. Yatsenko, G. Bonnet, B.W. Shore: Method and device for measuring distance. European patent EP1470621 (2003) and United states patent US 7684019 (2010)Google Scholar
  81. 81.
    K. Kasahara, K. Nakamura, M. Sato, H. Ito, Dynamic properties of an all solid-state frequency-shifted feedback laser. IEEE J. Quantum Electron. 34, 190–203 (1998)ADSCrossRefGoogle Scholar
  82. 82.
    M.G. Littmann, H.J. Metcalf, Spectrally resolved narrow pulsed dye laser without beam expander. Appl. Opt. 17, 2224–2227 (1978)ADSCrossRefGoogle Scholar
  83. 83.
    K. Liu, M.G. Littman, Novel geometry for single-mode scanning of tunable lasers. Opt. Lett. 6, 117–18 (1981)ADSCrossRefGoogle Scholar
  84. 84.
    B. Edlen, The refractive index of air. Metrologia 2, 71–80 (1966)ADSCrossRefGoogle Scholar
  85. 85.
    F. Aflatouni, B. Abiri, A. Rekhi, A. Hajimiri, Nanophotonic coherent imager. Opt. Express 23, 5117–5125 (2015)ADSCrossRefGoogle Scholar
  86. 86.
    J.V. Moloney, J. Hader, S.W. Koch, Quantum design of semiconductor active materials. Laser & Photon. Rev. 1, 24–43 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of PhysicsTechnical University KaiserslauternKaiserslauternGermany
  2. 2.SPHERON-VR AGWaldfischbach-BurgalbenGermany
  3. 3.Institute of PhysicsNational Academy of Sciences of UkraineKyivUkraine
  4. 4.KaiserslauternGermany
  5. 5.Defense R&D CenterHanwha CorporationDaejeonKorea
  6. 6.OPTIMAS Research CenterTechnical University KaiserslauternKaiserslauternGermany

Personalised recommendations