Applied Physics B

, 122:296 | Cite as

Absorption spectroscopy of xenon and ethylene–noble gas mixtures at high pressure: towards Bose–Einstein condensation of vacuum ultraviolet photons

  • Christian Wahl
  • Rudolf Brausemann
  • Julian Schmitt
  • Frank Vewinger
  • Stavros Christopoulos
  • Martin WeitzEmail author
Part of the following topical collections:
  1. “Enlightening the World with the Laser” - Honoring T. W. Hänsch


Bose–Einstein condensation is a phenomenon well known for material particles as cold atomic gases, and this concept has in recent years been extended to photons confined in microscopic optical cavities. Essential for the operation of such a photon condensate is a thermalization mechanism that conserves the average particle number, as in the visible spectral regime can be realized by subsequent absorption re-emission processes in dye molecules. Here we report on the status of an experimental effort aiming at the extension of the concept of Bose–Einstein condensation of photons towards the vacuum ultraviolet spectral regime, with gases at high-pressure conditions serving as a thermalization medium for the photon gas. We have recorded absorption spectra of xenon gas at up to 30 bar gas pressure of the \(5p^6\)\(5p^56s\) transition with a wavelength close to 147 nm. Moreover, spectra of ethylene noble gas mixtures between 158 and 180 nm wavelength are reported.


Einstein Condensation Vacuum Ultraviolet Spectral Regime Photon Condensate Xenon System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge support of the Deutsche Forschungsgemeinschaft (within SFB/TRR 185 and We1748-17) and the European Research Council (INPEC). We thank G. Wallstabe for his contributions in the early phase of this experiment.


  1. 1.
    A. Einstein, Zur Quantentheorie des idealen Gases. Sitz. ber. Preuss. Akad. der Wiss. 1, 1–3 (1925)zbMATHGoogle Scholar
  2. 2.
    E.A. Cornell, C.E. Wieman, Nobel lecture: Bose–Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    W. Ketterle, Nobel lecture: when atoms behave as waves: Bose–Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    K. Huang, Statistical Mechanics, 2nd edn. (Wiley, Hoboken, 1987)zbMATHGoogle Scholar
  6. 6.
    M. Planck, On the law of distribution of energy in the normal spectrum. Ann. Phys. 4, 1 (1901)Google Scholar
  7. 7.
    S.N. Bose, Plancks Gesetz und Lichtquantenhypothese. Z. Phys. 26, 178 (1924)ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Y.B. Zel’Dovich, E. Levich, Bose condensation and shock waves in photon spectra. Sov. Phys. JETP 28, 11 (1969)Google Scholar
  9. 9.
    R.Y. Chiao, Bogoliubov dispersion relation for a “photon fluid”: is this a superfluid? Opt. Commun. 179, 157 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    E. Bolda, R. Chiao, W. Zurek, Dissipative optical flow in a nonlinear Fabry–Pérot cavity. Phys. Rev. Lett. 86, 416 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    J. Kasprzak et al., Bose–Einstein condensation of exciton polaritons. Nature 443, 409 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    H. Deng, H. Haug, Y. Yamamoto, Exciton–polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1489 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    J. Klaers, J. Schmitt, F. Vewinger, M. Weitz, Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    J. Klaers, J. Schmitt, T. Damm, F. Vewinger, M. Weitz, Bose–Einstein condensation of paraxial light. Appl. Phys. B 105, 17 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    J. Schmitt, T. Damm, D. Dung, F. Vewinger, J. Klaers, M. Weitz, Observation of grand-canonical number statistics in a photon Bose–Einstein condensate. Phys. Rev. Lett. 112, 030401 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    J. Marelic, R. Nyman, Experimental evidence for inhomogeneous pumping and energy-dependent effects in photon Bose–Einstein condensation. Phys. Rev. A 91, 033813 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    E.H. Kennard, Phys. Rev. 11, 29 (1918)ADSCrossRefGoogle Scholar
  19. 19.
    B. Stepanov, Dokl. Akad. Nauk SSSR 112, 839 (1957)Google Scholar
  20. 20.
    D.A. Sawicki, R.S. Knox, Universal relationship between optical emission and absorption of complex systems: an alternative approach. Phys. Rev. A 54, 4837 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    P. Kirton, J. Keeling, Nonequilibrium model of photon condensation. Phys. Rev. Lett. 111, 100404 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    J. Schmitt, T. Damm, D. Dung, F. Vewinger, J. Klaers, M. Weitz, Thermalization kinetics of light: from laser dynamics to equilibrium condensation of photons. Phys. Rev. A 92, 011602 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    A. Zibrov, M. Lukin, D. Nikonov, L. Hollberg, M. Scully, V. Velichansky, H. Robinson, Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb. Phys. Rev. Lett. 75, 1499 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    O. Kocharovskaya, Amplification and lasing without inversion. Phys. Rep. 219, 175 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    E. Speller, B. Staudenmayer, V. Kempter, Z. Phys, Quenching cross sections for alkali–inert gas collisions. Z. Phys. A At. Nucl. 291, 311 (1979)ADSCrossRefGoogle Scholar
  26. 26.
    U. Vogl, M. Weitz, Spectroscopy of atomic rubidium at 500-bar buffer gas pressure: approaching the thermal equilibrium of dressed atom-light states. Phys. Rev. A 78, 011401 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    P. Moroshkin, L. Weller, A. Saß, J. Klaers, M. Weitz, Kennard–Stepanov relation connecting absorption and emission spectra in an atomic gas. Phys. Rev. Lett. 113, 063002 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    B. Borovich, V. Zuev, D. Stavrovsky, Pressure-induced ultraviolet absorption in rare gases: absorption coefficients for mixtures of Xe and Ar at pressures up to 40 atm in the vicinity of 147 nm. J. Quant. Spectr. Radiat. Transf. 13, 1241 (1973)ADSCrossRefGoogle Scholar
  29. 29.
    H.C. Lu, H.K. Chen, B.M. Cheng, Analysis of C2H4 in C2H6 and C2H5D with VUV absorption spectroscopy and a method to remove C2H4 from C2H6 and C2H5D. Anal. Chem. 76, 5965 (2004)CrossRefGoogle Scholar
  30. 30.
    M. Zelikoff, K. Watanabe, Absorption coefficients of ethylene in the vacuum ultraviolet. JOSA 43, 756 (1953)ADSCrossRefGoogle Scholar
  31. 31.
    V.L. Orkin, R.E. Huie, M.J. Kurylo, Rate constants for the reactions of OH with HFC-245cb (CH3CF2CF3) and some fluoroalkenes (CH2CHCF3, CH2CFCF3, CF2CFCF3, and CF2CF2). J. Phys. Chem. A 101, 9118 (1997)CrossRefGoogle Scholar
  32. 32.
    U. Vogl, M. Weitz, Laser cooling by collisional redistribution of radiation. Nature 461, 70 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    S. Yeh, P. Berman, Theory of collisionally aided radiative excitation. Phys. Rev. A 19, 1106 (1979)ADSCrossRefGoogle Scholar
  34. 34.
    O. Dutuit, M. Castex, J. Le Calve, M. Lavollee, Synchrotron radiation study of the molecular xenon fluorescence around 2000 Å. J. Chem. Phys. 73, 3107 (1980)ADSCrossRefGoogle Scholar
  35. 35.
    K.K. Docken, T.P. Schafer, Spectroscopic information on ground-state Ar 2, Kr 2, and Xe 2 from interatomic potentials. J. Mol. Spectrosc. 46, 454 (1973)ADSCrossRefGoogle Scholar
  36. 36.
    H.A. Koehler, L.J. Ferderber, D.L. Redhead, P.J. Ebert, Vacuum-ultraviolet emission from high-pressure xenon and argon excited by high-current relativistic electron beams. Phys. Rev. A 9, 768 (1974)ADSCrossRefGoogle Scholar
  37. 37.
    C. Beer, R. Bernheim, Hyperfine pressure shift of Cs 133 atoms in noble and molecular buffer gases. Phys. Rev. A 13, 1052 (1976)ADSCrossRefGoogle Scholar
  38. 38.
    N. Allard, J. Kielkopf, The effect of neutral nonresonant collisions on atomic spectral lines. Rev. Mod. Phys. 54, 1103 (1982)ADSCrossRefGoogle Scholar
  39. 39.
    J. Klaers, The thermalization, condensation and flickering of photons. J. Phys. B At. Mol. Opt. 47, 243001 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Christian Wahl
    • 1
  • Rudolf Brausemann
    • 1
  • Julian Schmitt
    • 1
  • Frank Vewinger
    • 1
  • Stavros Christopoulos
    • 1
  • Martin Weitz
    • 1
    Email author
  1. 1.Institut für Angewandte PhysikUniversität BonnBonnGermany

Personalised recommendations