Skip to main content
Log in

Characterization of oxidized carbon materials with photoinduced absorption response

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

An efficient application of fast remote diagnostics for carbon material (CM) bulk particles was demonstrated. Porous layers of CM particles with different oxidation levels were characterized by self-action of picosecond laser pulses at 1064 nm. Nitrogen adsorption, Boehm titration, and thermal analysis of the oxidized CMs revealed diverse specific surface area \(S_\mathrm {BET}\), reasonable surface acidity, and high concentration of surface oxygen-containing groups. Dense CM porous layers showed a monotonous reduction of the absorptive nonlinear optical (NLO) response efficiency versus the oxidation level with characteristic magnitude Im(\(\chi _\mathrm{C}^{(3)})\sim 10^{-10}\) esu for the carbon particles fraction. The obtained Im(\(\chi _\mathrm{C}^{(3)})/S_\mathrm {BET}\) ratio remains approximately constant, which indicates the certain proportion between the absorptive NLO response efficiency and the specific surface area. We suggest to use Im(\(\chi _\mathrm{C}^{(3)})\) as a figure of merit for carbons subjected to the oxidation—the route to enhance the CM surface reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Notarianni, J. Liu, K. Vernon, N. Motta, Beilstein J. Nanotechnol. 7, 149 (2016)

    Article  Google Scholar 

  2. S. Pilehvar, K. De Wael, Biosensors 5, 712 (2015)

    Article  Google Scholar 

  3. A. Fraleoni-Morgera, Small 7, 321 (2011)

    Article  Google Scholar 

  4. X. Wang, Y. Shi, in Nanofabrication and its Application in Renewable Energy, ed. by G. Zhang (RSC, London, 2014), pp. 1–30

    Chapter  Google Scholar 

  5. B. Charleux, C. Copret, E. Lacte, Chemistry of Organo-Hybrids: Synthesis and Characterization of Functional Nano-Objects (Wiley, Hoboken, 2014)

    Book  Google Scholar 

  6. C.-H. Andersson, H. Grennberg, Eur. J. Org. Chem. 26, 4421 (2009)

    Article  Google Scholar 

  7. V.K. Thakur, M.K. Thakur, Chemical Functionalization of Carbon Nanomaterials: Chemistry and Applications (CRC, Boca Raton, 2016)

    Google Scholar 

  8. L. Meng, C. Fu, Q. Lu, Prog. Nat. Sci. 19, 801 (2009)

    Article  Google Scholar 

  9. J. Chen, Y. Zhang, M. Zhang, B. Yao, Y. Li, L. Huang, C. Li, G. Shi, Chem. Sci. 7, 1874 (2016). doi:10.1039/C5SC03828F

    Article  Google Scholar 

  10. A. Ganguly, S. Sharma, P. Papakonstantinou, J. Hamilton, J. Phys. Chem. C 115, 17009 (2011)

    Article  Google Scholar 

  11. Y. Dai, Z. Li, J. Yang, ChemPhysChem 16, 2783 (2015)

    Article  Google Scholar 

  12. H. Grennberg, Carbon nanotubes and graphene, in Organic Synthesis and Molecular Engineering, ed. by M.B. Nielsen (Wiley, Hoboken, 2013)

    Google Scholar 

  13. P. Aloukos, I. Papagiannouli, A.B. Bourlinos, R. Zboril, S. Couris, Opt. Express 22, 12013 (2014)

    Article  ADS  Google Scholar 

  14. A.B. Bourlinos, G. Trivizas, M.A. Karakassides, M. Baikousi, A. Kouloumpis, D. Gournis, A. Bakandritsos, K. Hola, O. Kozak, R. Zboril, Carbon 83, 173 (2015)

    Article  Google Scholar 

  15. I.M. Belousova, D.A. Videnichev, I.M. Kislyakov, T.K. Krisko, N.N. Rozhkova, S.S. Rozhkov, Opt. Mater. Express 5, 169 (2015)

    Article  Google Scholar 

  16. S. Couris, N. Liaros, in Proceedings of 16th International Conference on Transparent Optical Networks (ICTON), ed. by M. Jaworski, M. Marciniak (IEEE & National Institute of Telecommunications, Warsaw, 2014), pp. 1–4. doi:10.1109/ICTON.2014.6876558

  17. M.G. Papadopoulos, A.J. Sadlej, J. Leszczynski, Non-Linear Optical Properties of Matter: From molecules to Condensed Phases (Springer, Dordrecht, 2006)

    Book  Google Scholar 

  18. V.E. Diyuk, A.N. Zaderko, K.I. Veselovska, V.V. Lisnyak, J. Therm. Anal. Calorim. 120, 1665 (2015)

    Article  Google Scholar 

  19. S. Barnartt, J.B. Ferguson, Can. J. Res. 27b, 87 (1947)

    Article  Google Scholar 

  20. S.L. Goertzen, K.D. Thriault, A.M. Oickle, A.C. Tarasuk, H.A. Andreas, Carbon 48, 1252 (2010)

    Article  Google Scholar 

  21. A.M. Oickle, S.L. Goertzen, K.R. Hopper, Y.O. Abdalla, H.A. Andreas, Carbon 48, 3313 (2010)

    Article  Google Scholar 

  22. J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Orfao, Carbon 37, 1379 (1999)

    Article  Google Scholar 

  23. W. Shen, Z. Li, Y. Liu, Rec. Pat. Chem. Eng. 1, 27 (2008)

    Article  Google Scholar 

  24. V.E. Diyuk, A.N. Zaderko, L.M. Grishchenko, A.V. Yatsymyrskiy, V.V. Lisnyak, Catal. Commun. 27, 33 (2012)

    Article  Google Scholar 

  25. K.I. Veselovs’ka, V.L. Veselovs’kyi, O.M. Zaderko, V.E. Diyuk, O.V. Ishchenko, J. Superhard Mater. 37, 39 (2015)

    Article  Google Scholar 

  26. V.Ya. Gayvoronsky, A.S. Popov, M.S. Brodyn, A.V. Uklein, V.V. Multian, O.O. Shul’zhenko, in Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications, ed. by O. Fesenko, L. Yatsenko (Springer, Heidelberg, 2015), pp. 147–164

    Google Scholar 

  27. L.P. Vera, J.A. Prez, H. Riascos, J. Phys. Conf. Ser. 511, 012063 (2014)

    Article  ADS  Google Scholar 

  28. R. Zhang, Y. Achiba, K.J. Fisher, G.E. Gadd, F.G. Hopwood, T. Ishigaki, D.R. Smith, S. Suzuki, G.D. Willett, J. Phys. Chem. B 103, 9450 (1999)

    Article  Google Scholar 

  29. L.W. Tutt, T.F. Boggess, Prog. Quantum Electron. 17, 299 (1993)

    Article  ADS  Google Scholar 

  30. H. Looyenga, Physica 31, 401 (1965)

    Article  ADS  Google Scholar 

  31. S.O. Nelson, D.P. Lindroth, R.L. Blake, Geophysics 54, 1344 (1989)

    Article  ADS  Google Scholar 

  32. J.G. Speight, The Chemistry and Technology of Coal, 3rd edn. (CRC, Boca Raton, 2012)

    Book  Google Scholar 

  33. W.L. Smith, in CRC Handbook of Laser Science and Technology, ed. by M.J. Weber (CRC, Boca Raton, 1988), pp. 229–258

    Google Scholar 

  34. Z.B. Liu, X.L. Zhang, X.Q. Yan et al., Chin. Sci. Bull. 57, 2971 (2012)

    Article  Google Scholar 

  35. V.E. Diyuk, R.T. Mariychuk, V.V. Lisnyak, J. Therm. Anal. Calorim. 124, 1119 (2016)

    Article  Google Scholar 

  36. B.J. Stagg, T.T. Charalampopoulos, Combust. Flame 94, 381 (1993)

    Article  Google Scholar 

  37. N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, S. Couris, J. Phys. Chem. 117, 6842 (2013)

    Google Scholar 

  38. S. Husaini, A. Lesko, E.M. Heckman, R.G. Bedford, Opt. Mater. Exp. 5, 102 (2014)

    Article  Google Scholar 

  39. I. Papagiannouli, A.B. Bourlinos, A. Bakandritsos, S. Couris, RSC Adv. 4, 40152 (2014)

    Article  Google Scholar 

  40. N.L. Dmitruk, A.V. Goncharenko, E.F. Venger, Optics of Small Particles and Composite Media (Naukova Dumka, Kyiv, 2009)

    Google Scholar 

  41. Z. Liu, X. Zhang, X. Yan, Y. Chen, J. Tian, Chin. Sci. Bull. 57, 2971 (2012)

    Article  Google Scholar 

  42. K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Nat. Chem. 2, 1015 (2010)

    Article  Google Scholar 

  43. C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, B. Beschoten, S.V. Rotkin, C. Stampfer, Nat. Commun. 6, 8429 (2015)

    Article  ADS  Google Scholar 

  44. I. Childres, L.A. Jauregui, W. Park, H. Cao, Y.P. Chen, in New developments in photon and materials research, ed. J.I. Jang, (Nova Science Publishers, Hauppauge, NY, 2013), pp. 403–419

    Google Scholar 

  45. F. Schedin, E. Lidorikis, A. Lombardo, V.G. Kravets, A.K. Geim, A.N. Grigorenko, K.S. Novoselov, A.C. Ferrari, ACS Nano 4, 5617 (2010)

    Article  Google Scholar 

  46. B. Wang, X. Zhang, in Graphene Science Handbook: Electrical and Optical Properties, ed. M. Aliofkhazraei, N. Ali, W.I. Milne, C. S. Ozkan, S. Mitura, J. L. Gervasoni (CRC Press, Boca Raton, 2016), pp. 457–468

    Chapter  Google Scholar 

  47. H. Shi, C. Wang, Zh. Sun, Y. Zhou, K. Jin, S.A.T. Redfern, G. Yang, Opt. Exp. 22, 19375 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors V.Ya.G., A.V.U., V.V.M. acknowledge a partial support from the NAS of Ukraine grant V-166. One of the authors, V.V.L. acknowledges supports from the National Scholarship Program of Slovak Republic for the Mobility of Students, Ph.D. Students, University Teachers, Researchers and Artists, SAIA Grant, n.o. in 2015, and the Agency of Ministry of Education, Science, Research and Sport of the Slovak Republic, the project ITMS: 26110230119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Uklein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 218 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uklein, A.V., Diyuk, V.E., Grishchenko, L.M. et al. Characterization of oxidized carbon materials with photoinduced absorption response. Appl. Phys. B 122, 287 (2016). https://doi.org/10.1007/s00340-016-6561-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6561-2

Keywords

Navigation