Skip to main content
Log in

Laser-induced incandescence from laser-heated silicon nanoparticles

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This work describes the application of temporally and spectrally resolved laser-induced incandescence to silicon nanoparticles synthesized in a microwave plasma reactor. Optical properties for bulk silicon presented in the literature were extended for nanostructured particles analyzed in this paper. Uncertainties of parameters in the evaporation submodel, as well as measurement noise, are incorporated into the inference process by Bayesian statistics. The inferred nanoparticle sizes agree with results from transmission electron microscopy, and the determined accommodation coefficient matches the values of the preceding study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F.E. Kruis, H. Fissan, A. Peled, Synthesis of nanoparticles in the gas-phase for electronic, optical and magnetic applications—a review. J. Aerosol Sci. 29, 511–535 (1998)

    Article  Google Scholar 

  2. M. Swihart, Vapour phase synthesis of nanoparticles. Curr. Opin. Colloid Interface Sci. 8, 127–133 (2003)

    Article  Google Scholar 

  3. M. Leparoux, C. Schreuders, P. Fauchais, Improved plasma synthesis of Si-nanopowders by quenching. Adv. Eng. Mat. 10, 1147–1150 (2008)

    Article  Google Scholar 

  4. S. Hartner, D. Schwesig, I. Plümel, D.E. Wolf, A. Lorke, H. Wiggers, in Nanoparticles from the Gasphase: Formation, Structure, Properties, eds. by A. Lorke, M. Winterer, R. Schmechel, C. Schulz (Springer, Berlin Heidelberg, 2012), pp. 231–271

  5. L. Mangolini, E. Thimsen, U. Kortshagen, High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5, 655–659 (2005)

    Article  ADS  Google Scholar 

  6. G. Schierning, R. Theissmann, H. Wiggers, D. Sudfeld, A. Ebbers, D. Franke, V.T. Witusiewicz, M. Apel, Microcrystalline silicon formation by silicon nanoparticles. J. Appl. Phys. 103, 084305–084306 (2008)

    Article  ADS  Google Scholar 

  7. T. Hülser, S.M. Schnurre, H. Wiggers, C. Schulz, Gas-phase synthesis of nanoscale silicon as an economical route towards sustainable energy technology. KONA Powder Part. J. 29, 191–207 (2011)

    Article  Google Scholar 

  8. O.M. Feroughi, L. Deng, S. Kluge, T. Dreier, H. Wiggers, I. Wlokas, C. Schulz, “Experimental and numerical study of a HMDSO-seeded premixed laminar low-pressure flame for SiO2 nanoparticle synthesis”. Proc. Combust. Inst. 36. doi:10.1016/j.proci.2016.07.131

  9. C. Hecht, A. Abdali, T. Dreier, C. Schulz, Gas-temperature imaging in a microwave-plasma nanoparticle-synthesis reactor using multi-line NO-LIF thermometry. Z. Phys. Chem. 225, 1225–1235 (2011)

    Article  Google Scholar 

  10. H.A. Michelsen, C. Schulz, G.J. Smallwood, S. Will, Laser-induced incandescence: particulate diagnostics for combustion, atmospheric, and industrial applications. Prog. Energy Combust. Sci. 51, 2–48 (2015)

    Article  Google Scholar 

  11. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Laser-induced incandescence: recent trends and current questions. Appl. Phys. B 83, 333–354 (2006)

    Article  ADS  Google Scholar 

  12. P. Roth, A.V. Filippov, In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission. J. Aerosol Sci. 27, 95–104 (1996)

    Article  Google Scholar 

  13. R.L. Vander Wal, T.M. Ticich, A.B. Stephens, Can soot primary particle size be determined using laser-induced incandescence? Combust. Flame 116, 291–296 (1999)

    Article  Google Scholar 

  14. S. Bejaoui, R. Lemaire, P. Desgroux, E. Therssen, Experimental study of the E(m, λ)/E(m 1064 ratio as a function of wavelength, fuel type, height above the burner and temperature. Appl. Phys. B Lasers Opt. 116, 313–323 (2014)

    Article  ADS  Google Scholar 

  15. X. López-Yglesias, P.E. Schrader, H.A. Michelsen, Soot maturity and absorption cross sections. J. Aerosol Sci. 75, 43–64 (2014)

    Article  Google Scholar 

  16. T.A. Sipkens, R. Mansmann, K.J. Daun, N. Pettermann, J. Titantah, M. Karttunen, H. Wiggers, T. Dreier, C. Schulz, In situ nanoparticle size measurements of gas-borne silicon nanoparticles by time-resolved laser-induced incandescence. Appl. Phys. B 119, 561–575 (2014)

    Article  Google Scholar 

  17. N. Petermann, N. Stein, G. Schierning, R. Theissmann, B. Stoib, M.S. Brandt, C. Hecht, C. Schulz, H. Wiggers, Plasma synthesis of nanostructures for improved thermoelectric properties. J. Phys. D Appl. Phys. 44, 174034 (2011)

    Article  ADS  Google Scholar 

  18. M. Leschowski, T. Dreier, C. Schulz, An automated thermophoretic soot sampling device for laboratory-scale high-pressure flames. Rev. Sci. Instrum. 85, 045103 (2014)

    Article  ADS  Google Scholar 

  19. K.A. Thomson, M.R. Johnson, D.R. Snelling, G.J. Smallwood, Diffuse-light two-dimensional line-of-sight attenuation for soot concentration measurements. Appl.Opt. 47, 694–703 (2008)

    Article  ADS  Google Scholar 

  20. D.R. Snelling, K.A. Thomson, G.J. Smallwood, Ö.L. Gülder, Two-dimensional imaging of soot volume fraction in laminar diffusion flames. Appl. Opt. 38, 2478–2485 (1999)

    Article  ADS  Google Scholar 

  21. F. Liu, B.J. Stagg, D.R. Snelling, G.J. Smallwood, Effects of primary soot particle size distribution on the temperature of soot particles heated by a nanosecond pulsed laser in an atmospheric laminar diffusion flame. Int. J. Heat Mass Trans. 49, 777–788 (2006)

    Article  Google Scholar 

  22. C.F. Bohren, D.R. Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1983)

    Google Scholar 

  23. T.C. Bond, R.W. Bergstrom, Light absorption by carbonaceous particles: an investigative review. Aerosol Sci. Tech. 40, 27–67 (2006)

    Article  Google Scholar 

  24. P.J. Hadwin, T.A. Sipkens, K.A. Thomson, F. Liu, K.J. Daun, Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements. Appl. Phys. B 122, 1–16 (2016)

    Article  ADS  Google Scholar 

  25. K.M. Shvarev, B.A. Baun, P.V. Gel’d, Optical properties of liquid silicon. Sov. Phys. Solid State 16, 2111–2112 (1975)

    Google Scholar 

  26. K.D. Li, P.M. Fauchet, Drude parameters of liquid silicon at the melting temperature. Appl. Phys. Lett. 51, 1747–1749 (1987)

    Article  ADS  Google Scholar 

  27. H. Kawamura, H. Fukuyama, M. Watanabe, T. Hibiya, Normal spectral emissivity of undercooled liquid silicon. Meas. Sci. Tech. 16, 386–393 (2005)

    Article  ADS  Google Scholar 

  28. M.J. Assael, I.J. Armyra, J. Brillo, S.V. Stankus, J.W. Wu, W.A. Wakeham, Reference data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zin. J. Chem. Phys. Ref. Data 41, 033101 (2012)

    Article  ADS  Google Scholar 

  29. H. Sasaki, A. Ikari, K. Terashima, S. Kimura, Temperature dependence of the electrical resistivity of molten silicon. Jpn. J. Appl. Phys. 34, 3426–3431 (1995)

    Article  ADS  Google Scholar 

  30. R. Kojima Endo, Y. Fujihara, M. Susa, Calculation of the density and heat capacity of silicon by molecular dynamics simulation. High Temp. High Press. 35(36), 505–511 (2003)

    Article  Google Scholar 

  31. P.D. Desai, Thermodynamic properties of iron and silicon. J. Phys. Chem. Ref. Data 15, 967–983 (1986)

    Article  ADS  Google Scholar 

  32. E.H. Kennard, Kinetic theory of gases: with an introduction to statistical mechanics (McGraw-Hill, New York, 1938)

    Google Scholar 

  33. V. Sevast’yanov, P.Y. Nosatenko, Y. Nosatenko, V. Gorskii, Y.S. Ezhov, D. Sevast’yanov, E. Simonenko, N. Kuznetsov, “Experimental and theoretical determination of the saturation vapor pressure of silicon in a wide range of temperatures”. Russ. J. Inorg. Chem. 55, 2073–2088 (2010)

    Article  Google Scholar 

  34. T. Tomooka, Y. Shoji, T. Matsui, High temperature vapor pressure of Si. J Mass Spectrom Soc Jpn. 47, 49–53 (1999)

    Article  Google Scholar 

  35. S.I. Lopatin, V.L. Stolyarova, V.G. Sevast’yanov, P.Y. Nosatenko, V.V. Gorskii, D.V. Sevast’yanov, N.T. Kuznetsov, “Determination of the saturation vapor pressure of silicon by Knudsen cell mass spectrometry”. Russ. J. Inorg. Chem. 57, 219–225 (2012)

    Article  Google Scholar 

  36. F. Millot, V. Sarou-Kaniana, J.-C. Rifflet, B. Vinet, The surface tension of liquid silicon at high temperature. Mater. Sci. Eng., A 495, 8–13 (2008)

    Article  Google Scholar 

  37. P. van de Weijer, B.H. Zwerver, Laser-induced fluorescence of OH and SiO molecules during thermal chemical vapour deposition of SiO2 from silane-oxygen mixtures. Chem. Phys. Lett. 163, 48–54 (1989)

    Article  ADS  Google Scholar 

  38. T. Dreier, O. Feroughi, A. Langer, C. Schulz, Spatially-resolved measurements of gas-phase temperature and SiO concentration in a low-pressure nanoparticle synthesis reactor using laser-induced fluorescence. in Imaging and Applied Optics, OSA Technical Digest (online), (Optical Society of America, 2014), Paper LM1D.2

  39. G.E. Jellison, D.H. Lowndes, Measurements of the optical properties of silicon and Germainum using nanosecond time-resolved ellipsometry. App. Phys. Lett. 51, 352–354 (1987)

    Article  ADS  Google Scholar 

  40. P. Buffat, J.P. Borel, Size effect on the melting temperature of gold particles. Phys. Rev. A 13, 2287–2298 (1976)

    Article  ADS  Google Scholar 

  41. V. Beyer, D.A. Greenhalgh, Laser induced incandescence under high vacuum conditions. Appl. Phys. B 83, 455–467 (2006)

    Article  ADS  Google Scholar 

  42. R.L. Vander, Wal, “Laser-induced incandescence: excitation and detection conditions, material transformations and calibration”. Appl. Phys. B 96, 601–611 (2009)

    Article  ADS  Google Scholar 

  43. D. Giulietti, L. A. Gizzi, “X-ray emission from laser-produced plasmas”, La Rivista del Nuovo Cimento (1978–1999) 1998, 21, 1–93

  44. T. Sipkens, N. Singh, K. Daun, N. Bizmark, M. Ioannidis, Examination of the thermal accommodation coefficient used in the sizing of iron nanoparticles by time-resolved laser-induced incandescence. Appl. Phys. B 119, 561–575 (2015)

    Article  Google Scholar 

  45. U. von Toussaint, Bayesian inference in physics. Rev. Mod. Phys. 83, 943–999 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was carried out with support from the German Research Foundation, DFG (SCHU 1369/14). The participation of Kyle Daun was supported by a grant from the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Menser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menser, J., Daun, K., Dreier, T. et al. Laser-induced incandescence from laser-heated silicon nanoparticles. Appl. Phys. B 122, 277 (2016). https://doi.org/10.1007/s00340-016-6551-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6551-4

Keywords

Navigation