Skip to main content
Log in

Mass-productive fabrication of a metal–insulator–metal plasmon waveguide with a linear taper for nanofocusing

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The fabrication of a metal–insulator–metal plasmon waveguide with a linear taper is reported. Highly efficient nanofocusing of light with a Au–SiO2–Au waveguide with a three-dimensional taper had been demonstrated. However, conventional vertical taper structures were fabricated with a low-throughput process based on electron beam scanning. We propose an efficient, mass-productive fabrication process using a standard dry etching technique. A key improvement is the employment of a mixed gas of CHF3 and O2. By optimizing the gas composition and the cooling process of the substrate, a SiO2 vertical taper with an angle of 19°, which is very close to the optimum 20°, was successfully produced. At the tip section, an ultra-thin waveguide as thin as 5.6 nm, only one-third of the conventional demonstration, is reproducibly realized by the employment of an atomic layer deposition of Al2O3. Coupling efficiency as high as 72 % numerically demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010)

    Article  ADS  Google Scholar 

  2. D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010)

    Article  ADS  Google Scholar 

  3. M.I. Stockman, Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004)

    Article  ADS  Google Scholar 

  4. E. Verhagen, A. Polman, L.K. Kuipers, Nanofocusing in laterally tapered plasmonic waveguides. Opt. Express 16, 45–57 (2008)

    Article  ADS  Google Scholar 

  5. D.P. O’Connor, Modelling of nano-optic light delivery mechanisms for use in high density data storage, Ph.D thesis, The Queen’s University of Belfast, UK (2010)

  6. V.A. Zenin, A. Andryieuski, R. Malureanu, I.P. Radko, V.S. Volkov, D.K. Gramotnev, A.V. Lavrinenko, S.I. Bozhevolnyi, Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas. Nano Lett. 15, 8148–8154 (2015)

    Article  ADS  Google Scholar 

  7. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007)

    Google Scholar 

  8. J.A. Dionne, L.A. Sweatlock, H.A. Atwater, Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73, 035407 (2006)

    Article  ADS  Google Scholar 

  9. H.T. Miyazaki, Y. Kurokawa, Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys. Rev. Lett. 96, 097401 (2006)

    Article  ADS  Google Scholar 

  10. Y. Kurokawa, H.T. Miyazaki, Metal-insulator-metal plasmon nanocavities: analysis of optical properties. Phys. Rev. B 75, 035411 (2007)

    Article  ADS  Google Scholar 

  11. S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, E. Yablonovitch, A plasmonic dimple lens for nanoscale focusing of light. Nano Lett. 9, 3447–3452 (2009)

    Article  ADS  Google Scholar 

  12. H. Choo, M. Kim, M. Staffaroni, T.J. Seok, J. Bokor, S. Cabrini, P.J. Schuck, M.C. Wu, E. Yablonovitch, Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper. Nature Photon. 6, 838–844 (2012)

    Article  ADS  Google Scholar 

  13. T. Brenner, W. Hunziker, M. Smit, M. Bachmann, G. Guekos, H. Melchior, Vertical InP/InGaAsP tapers for low-loss optical fibre-waveguide coupling. Electron. Lett. 28, 2040–2041 (1992)

    Article  Google Scholar 

  14. S. Ullerich, R. Steingruber, A. Umbach, Gray-tone lithography and dry etching technique for the fabrication of integrated spot size converters. Microelectron. Eng. 46, 303–306 (1999)

    Article  Google Scholar 

  15. B. Jacobs, R. Zengerle, K. Faltin, W. Weicrshausen, Vertically tapered spot size transformers fabricated by a simple masking technique. Electron. Lett. 31, 794–796 (1995)

    Article  ADS  Google Scholar 

  16. Z. Yang, N. Fang, A. Wu, J. Chen, M. Zhang, X. Wang, S. Zou, Fabrication and characterization of integrated three-dimensional linear taper on silicon-on-insulator. Opt. Eng. 48, 303503 (2009)

    Google Scholar 

  17. R.L. Puurunen, Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J. Appl. Phys. 97, 121301 (2005)

    Article  ADS  Google Scholar 

  18. W. Lee, H. Yang, P.J. Reucroft, H. Soh, J. Kim, S. Woo, J. Lee, Dry patterning of copper films using an O2 plasma and hexafluoroacetylacetone. Thin Solid Films 392, 122–127 (2001)

    Article  ADS  Google Scholar 

  19. E.D. Palik, Handbook of Optical Constants of Solids III (Academic Press, San Diego, 1998)

    Google Scholar 

  20. H. Im, K.C. Bantz, N.C. Lindquist, C.L. Haynes, S.-H. Oh, Vertically oriented sub-10-nm plasmonic nanogap arrays. Nano Lett. 10, 2231–2236 (2010)

    Article  ADS  Google Scholar 

  21. X. Chen, H.-R. Park, M. Pelton, X. Piao, N.C. Lindquist, H. Im, Y.J. Kim, J.S. Ahn, K.J. Ahn, N. Park, D.-S. Kim, S.-H. Oh, Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves. Nat. Commun. 4, 2361 (2013)

    ADS  Google Scholar 

  22. K. Ikeda, H.T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, S. Kitagawa, Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities. Appl. Phys. Lett. 92, 021117 (2008)

    Article  ADS  Google Scholar 

  23. P. Nagpal, N.C. Lindquist, S.-H. Oh, D.J. Norris, Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325, 594–597 (2009)

    Article  ADS  Google Scholar 

  24. B. Choi, M. Iwanaga, H.T. Miyazaki, K. Sakoda, Y. Sugimoto, Photoluminescence-enhanced plasmonic substrates fabricated by nanoimprint lithography. J. Micro/Nanolith. MEMS MOEMS 13, 023007 (2014)

    Article  ADS  Google Scholar 

  25. H.T. Miyazaki, T. Kasaya, H. Oosato, Y. Sugimoto, B. Choi, M. Iwanaga, K. Sakoda, Ultraviolet-nanoimprinted packaged metasurface thermal emitters for infrared CO2 sensing. Sci. Technol. Adv. Mater. 16, 035005 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to D. Tsuya, E. Watanabe, N. Ikeda, H. Kurosawa, Y. Nakayama, F. Uesugi, K. Morita, M. Song, K. Mitsuishi, and I. Koda for discussions and technical assistance. This study is supported by NIMS Nanofabrication Platform and NIMS Microstructural Characterization Platform in Nanotechnology Platform Project sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. This work is also supported by NIMS Internship Program, Research and Research for Industry Grants (RRI), Thailand Research Fund (TRF), and Seagate (Thailand) Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kruawan Wongpanya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wongpanya, K., Kasaya, T., Miyazaki, H.T. et al. Mass-productive fabrication of a metal–insulator–metal plasmon waveguide with a linear taper for nanofocusing. Appl. Phys. B 122, 238 (2016). https://doi.org/10.1007/s00340-016-6515-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6515-8

Keywords

Navigation