Skip to main content

Optical-feedback cavity-enhanced absorption spectroscopy with an interband cascade laser: application to SO2 trace analysis

Abstract

The combination of interband cascade lasers (ICL) with cavity-enhanced absorption spectroscopy (CEAS) offers new perspectives in trace analysis and isotope ratio measurements. ICLs cover a mid-infrared spectral window (3–4 µm), in between those covered by Ga(InAs)Sb diode lasers and quantum cascade lasers (QCL), where strong molecular transitions can be found. While ICLs have lower emission power than QCLs, their thermal dissipation is much closer to that of telecom diode lasers and their current tuning range larger, which are both major advantages for developing compact instruments. We present an OF-CEAS implementation with an ICL at 4.015 µm, in which optical feedback (OF) enables efficient injection into the high-finesse cavity. In this paper, we also discuss a procedure allowing to obtain an accurate measurement of the OF rate. With regard to performance, we obtain a rms noise-equivalent absorption of 7.7 × 10−9 cm−1 for one acquired spectrum (80 ms) with a cavity of finesse 3900, which translates to a normalized figure of merit of 2.2 × 10−9 cm−1/√Hz, allowing for SO2 trace analysis down to ppbv levels with a response time of seconds.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.M. Flaud, R.R. Gamache, J.J. Harrison, J.M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 130, 4 (2013)

    ADS  Article  Google Scholar 

  2. N. Jacquinet-Husson, L. Crepeau, R. Armante, C. Boutammine, A. Chédin, N.A. Scott, C. Crevoisier, V. Capelle, C. Boone, N. Poulet-Crovisier, A. Barbe, A. Campargue, D. Chris Benner, Y. Benilan, B. Bézard, V. Boudon, L.R. Brown, L.H. Coudert, A. Coustenis, V. Dana, V.M. Devi, S. Fally, A. Fayt, J.M. Flaud, A. Goldman, M. Herman, G.J. Harris, D. Jacquemart, A. Jolly, I. Kleiner, A. Kleinböhl, F. Kwabia-Tchana, N. Lavrentieva, N. Lacome, L.H. Xu, O.M. Lyulin, J.Y. Mandin, A. Maki, S. Mikhailenko, C.E. Miller, T. Mishina, N. Moazzen-Ahmadi, H.S.P. Müller, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, D.T. Petkie, A. Predoi-Cross, C.P. Rinsland, J.J. Remedios, M. Rotger, M.A.H. Smith, K. Sung, S. Tashkun, J. Tennyson, R.A. Toth, A.C. Vandaele, J. Vander, Auwera. J. Quant. Spectrosc. Radiat. Transf. 112, 2395 (2011)

    ADS  Article  Google Scholar 

  3. P.W. Werle, in Laser in Environmental and Life Sciences: Modern Analytical Methods, ed. by P. Hering, J.P. Lay, S. Stry (Springer, Berlin, 2004), pp. 223–243

  4. K. Wörle, F. Seichter, A. Wilk, C. Armacost, T. Day, M. Godejohann, U. Wachter, J. Vogt, P. Radermacher, B. Mizaikoff, Anal. Chem. 85, 2697 (2013)

    Article  Google Scholar 

  5. X. Cui, C. Lengignon, W. Tao, W. Zhao, G. Wysocki, E. Fertein, C. Coeur, A. Cassez, L. Croize, W. Chen, Y. Wang, W. Zhang, X. Gao, W. Liu, Y. Zhang, F. Dong, J. Quant. Spectrosc. Radiat. Transf. 113, 1300 (2012)

    ADS  Article  Google Scholar 

  6. J.S. Li, W. Chen, H. Fischer, Appl. Spectrosc. Rev. 48, 523 (2013)

    ADS  Article  Google Scholar 

  7. T. He, Z. Yang, T. Liu, Y. Shen, X. Fu, X. Qian, Y. Zhang, Y. Wang, Z. Xu, S. Zhu, C. Mao, G. Xu, J. Tang, Sci. Rep. 6, 22485 (2016)

    ADS  Article  Google Scholar 

  8. A. Aiuppa, G. Giudice, S. Gurrieri, M. Liuzzo, M. Burton, T. Caltabiano, A.J.S. McGonigle, G. Salerno, H. Shinohara, M. Valenza, Geophys. Res. Lett. 35, 2004 (2008)

    Article  Google Scholar 

  9. C. Oppenheimer, B. Scaillet, R.S. Martin, Rev. Mineral. Geochem. 73, 363 (2011)

    Article  Google Scholar 

  10. J. Morville, D. Romanini, E. Kerstel, Sasdasas, in Cavity-Enhanced Spectroscopy and Sensing, ed. by G. Gagliardi, H.-P. Loock (Springer, Berlin, 2014), pp. 163–209

    Chapter  Google Scholar 

  11. K.M. Manfred, G.A.D. Ritchie, N. Lang, J. Röpcke, J.H. van Helden, Appl. Phys. Lett. 106, 221106 (2015)

    ADS  Article  Google Scholar 

  12. J. Morville, S. Kassi, M. Chenevier, D. Romanini, Appl. Phys. B 80, 1027 (2005)

    ADS  Article  Google Scholar 

  13. G. Maisons, P.G. Carbajo, M. Carras, D. Romanini, Opt. Lett. 35, 3607 (2011)

  14. P. Gorrotxategi-Carbajo, E. Fasci, I. Ventrillard, M. Carras, G. Maisons, D. Romanini, Appl. Phys. B 110, 309 (2013)

  15. E.R.T. Kerstel, R.Q. Iannone, M. Chenevier, S. Kassi, H.-J. Jost, D. Romanini, Appl. Phys. B 85, 397 (2006)

    ADS  Article  Google Scholar 

  16. P. Laurent, A. Clairon, C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989)

    ADS  Article  Google Scholar 

  17. D. Romanini, Appl. Phys. B Lasers Opt. 115, 517 (2014)

    ADS  Article  Google Scholar 

  18. T. Mitsu, N. Kato, K. Shimaoka, M. Miyamura, Sci. Total Environ. 208, 133 (1997)

    Article  Google Scholar 

  19. P. Werle, R. Miicke, F. Slemr, Appl. Phys. B 57, 131 (1993)

    ADS  Article  Google Scholar 

  20. J.P. Waclawek, R. Lewicki, H. Moser, M. Brandstetter, F.K. Tittel, and B. Lendl, Appl. Phys. B 117, 113 (2014)  

Download references

Acknowledgments

We acknowledge financing by the French Agence Nationale de la Recherche (Breath-Diag project: ANR-15-CE18-0006-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucile Richard.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Richard, L., Ventrillard, I., Chau, G. et al. Optical-feedback cavity-enhanced absorption spectroscopy with an interband cascade laser: application to SO2 trace analysis. Appl. Phys. B 122, 247 (2016). https://doi.org/10.1007/s00340-016-6502-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6502-0

Keywords

  • Cavity Mode
  • Quantum Cascade Laser
  • Optical Feedback
  • Current Ramp
  • HITRAN Simulation