Applied Physics B

, 122:227 | Cite as

Holographic method for site-resolved detection of a 2D array of ultracold atoms

  • Daniel Kai Hoffmann
  • Benjamin Deissler
  • Wolfgang Limmer
  • Johannes Hecker Denschlag
Article

Abstract

We propose a novel approach to site-resolved detection of a 2D gas of ultracold atoms in an optical lattice. A near-resonant laser beam is coherently scattered by the atomic array, and after passing a lens its interference pattern is holographically recorded by superimposing it with a reference laser beam on a CCD chip. Fourier transformation of the recorded intensity pattern reconstructs the atomic distribution in the lattice with single-site resolution. The holographic detection method requires only about two hundred scattered photons per atom in order to achieve a high reconstruction fidelity of 99.9 %. Therefore, additional cooling during detection might not be necessary even for light atomic elements such as lithium. Furthermore, first investigations suggest that small aberrations of the lens can be post-corrected in imaging processing.

References

  1. 1.
    I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    K. Nelson, X. Li, D. Weiss, Nat. Phys. 3, 556–560 (2007)CrossRefGoogle Scholar
  3. 3.
    W. Bakr, J. Gillen, A. Peng, S. Fölling, M. Greiner, Nature 462, 74–77 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    J. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, S. Kuhr, Nature 467, 68–72 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    L. Cheuk, M. Nichols, M. Okan, T. Gersdorf, V. Ramasesh, W. Bakr, T. Lompe, M. Zwierlein, Phys. Rev. Lett. 114, 193001 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    E. Haller, J. Hudson, A. Kelly, D. Cotta, B. Peaudecerf, G. Bruce, S. Kuhr, Nat. Phys. 11, 738–742 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Parsons, F. Huber, A. Mazurenko, C. Chiu, W. Setiawan, K. Wooley-Brown, S. Blatt, M. Greiner, Phys. Rev. Lett. 114, 213002 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    L. Turner, K. Weber, D. Paganin, R. Scholten, Opt. Lett. 29, 232–234 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    L. Turner, K. Domen, R. Scholten, Phys. Rev. A 72, 031403(R) (2005)ADSCrossRefGoogle Scholar
  10. 10.
    P. Light, C. Perrella, A. Luiten, Appl. Phys. Lett. 102, 171108 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    J. Sobol, S. Wu, New J. Phys. 16, 093064 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    M. Andrews, M. Mewes, N. van Druten, D. Durfee, D. Kurn, W. Ketterle, Science 273, 84–87 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    S. Kadlecek, J. Sebby, R. Newell, T. Walker, Opt. Lett. 26, 137–139 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    E. Leith, J. Upatnieks, J. Opt. Soc. Am. 52, 1123–1128 (1962)ADSCrossRefGoogle Scholar
  15. 15.
    C. Weitenberg, P. Schauß, T. Fukuhara, M. Cheneau, M. Endres, I. Bloch, S. Kuhr, Phys. Rev. Lett. 106, 215301 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    U. Schnars, W. Jüptner, Meas. Sci. Technol. 13, R85–R101 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    J. Goodman, Introduction to Fourier Optics (Roberts & Co Publ, Englewood, 2005)Google Scholar
  18. 18.
    R. Loudon, The Quantum Theory of Light (Oxford University Press, Oxford, 2009)MATHGoogle Scholar
  19. 19.
    B. Mollow, Phys. Rev. 188, 1969–1975 (1969)ADSCrossRefGoogle Scholar
  20. 20.
    J. Dainty, Laser Speckle and Related Phenomena (Springer, Berlin, 1984)Google Scholar
  21. 21.
    J.W. Goodman, J. Opt. Soc. Am. 66, 1145–1150 (1976)ADSCrossRefGoogle Scholar
  22. 22.
    A. Omran, M. Boll, T. Hilker, K. Kleinlein, G. Salomon, I. Bloch, C. Gross, Phys. Rev. Lett. 115, 263001 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Daniel Kai Hoffmann
    • 1
  • Benjamin Deissler
    • 1
    • 2
  • Wolfgang Limmer
    • 1
  • Johannes Hecker Denschlag
    • 1
  1. 1.Institut für QuantenmaterieUniversität UlmUlmGermany
  2. 2.Leica Microsystems CMS GmbHWetzlarGermany

Personalised recommendations