Complex extraordinary dielectric function of Mg-doped lithium niobate crystals at terahertz frequencies

Abstract

We study the dispersion of the extraordinary dielectric function real and imaginary parts in the wide terahertz-frequency range of the lowest polariton branch for bulk LiNbO3 and Mg:LiNbO3 crystals. At frequencies 0.1–2.5 THz, both dispersion parts are measured by means of standard time-domain terahertz spectroscopy, and at higher frequencies up to 5.5 THz, the dielectric function real part is determined using a common scheme of spontaneous parametric down-conversion under near-forward Raman scattering by phonon polaritons. A special approach is applied for measuring of the dielectric function imaginary part at frequencies 1–3 THz, based on the analysis of visibility of three-wave second-order interference under spontaneous parametric down-conversion. The generalized approximate expressions are obtained for complex dielectric function dispersion within the lower polariton branches of LiNbO3 and Mg:LiNbO3. It is shown that the well-known decrease in terahertz-wave absorption of lithium niobate crystals under Mg-doping is caused by changes in the defect structure and reduction of coupling of the terahertz-frequency polaritons with Debye relaxational mode.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    E. Pickwell, V.P. Wallace, J. Phys. D 39, R301 (2003)

    Article  Google Scholar 

  2. 2.

    T. Hattory, M. Sakamoto, Appl. Phys. Lett. 90, 261106 (2007)

    ADS  Article  Google Scholar 

  3. 3.

    J. Shan, A. Nahata, T.F. Heinz, J. Nonlinear Opt. Phys. Mater. 11, 31 (2002)

    ADS  Article  Google Scholar 

  4. 4.

    G.Kh. Kitaeva, Laser Phys. Lett. 5(8), 559 (2008)

    ADS  Article  Google Scholar 

  5. 5.

    J.A. Fulop, Z. Ollmann, Cs. Lombosi, C. Skrobol, S. Klingebiel, L. Palfalvi, F. Krausz, S. Karsch, J. Hebling, Opt. Express 22, 20155 (2014)

    ADS  Article  Google Scholar 

  6. 6.

    Y.S. Lee, T. Meade, T.B. Norris, A. Galvanauskas, Appl. Phys. Lett. 78, 3583 (2001)

    ADS  Article  Google Scholar 

  7. 7.

    H. Minamide, S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, J. Infrared Millim. Terahertz Waves 35, 25–37 (2014)

    Article  Google Scholar 

  8. 8.

    G.Kh. Kitaeva, S.P. Kovalev, I.I. Naumova, R.A. Akhmedzhanov, I.E. Ilyakov, B.V. Shishkin, E.V. Suvorov, Appl. Phys. Lett. 96, 071106 (2010)

    ADS  Article  Google Scholar 

  9. 9.

    O.F. Schirmer, M. Imlau, C. Merschjann, B. Schoke, J. Phys. Condens. Matter 21, 123201 (2009)

    ADS  Article  Google Scholar 

  10. 10.

    T. Qiu, M. Maier, Phys. Rev. B 56, R5717 (1997)

    ADS  Article  Google Scholar 

  11. 11.

    G.H. Ma, S.H. Tang, G.Kh. Kitaeva, I.I. Naumova, J. Opt. Soc. Am. B 23, 81 (2006)

    ADS  Article  Google Scholar 

  12. 12.

    L. Palfalvi, J. Hebling, J. Kuhl, Б. Peter, K. Polgar, J. Appl. Phys. 97, 123505 (2005)

    ADS  Article  Google Scholar 

  13. 13.

    M. Schall, H. Helm, S.R. Keiding, Int. J. Infrared Millim. Waves 20, 595 (1999)

    Article  Google Scholar 

  14. 14.

    J. Kiessling, K. Buse, I. Breunig, J. Opt. Soc. Am. B 30, 950 (2013)

    ADS  Article  Google Scholar 

  15. 15.

    K.A. Kuznetsov, S.P. Kovalev, G.K. Kitaeva et al., Appl. Phys. B 101, 811–815 (2010)

    ADS  Article  Google Scholar 

  16. 16.

    A.V. Burlakov, Yu.B. Mamaeva, A.N. Penin, M.V. Chekhova, J. Exp. Theor. Phys. 93, 55 (2001)

    ADS  Article  Google Scholar 

  17. 17.

    I.I. Naumova, Crystallogr. Rep. 39, 1119 (1994)

    Google Scholar 

  18. 18.

    G.A. Askaryan, Sov. Phys. JETP 15, 943 (1962)

    Google Scholar 

  19. 19.

    D.H. Auston, K.P. Cheung, J.A. Valdmanis, D.A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984)

    ADS  Article  Google Scholar 

  20. 20.

    S.B. Bodrov, A.N. Stepanov, M.I. Bakunov, B.V. Shishkin, I.E. Ilyakov, R.A. Akhmedzhanov, Opt. Express 17, 1871 (2009)

    ADS  Article  Google Scholar 

  21. 21.

    Yu.H. Avetisyan, A.H. Makaryan, K.Kh. Khachatryan, V.R. Tadevosyan, J. Contemp. Phys. (Armen. Acad. Sci.) 43(3), 121–124 (2008)

    ADS  Article  Google Scholar 

  22. 22.

    S.P. Kovalev, G.Kh. Kitaeva, J. Opt. Soc. Am. B 30, 2650 (2013)

    ADS  Article  Google Scholar 

  23. 23.

    W. Withayachumnankul, M. Naftaly, J Infrared Millim. Terahertz Waves 35, 610 (2014)

    Article  Google Scholar 

  24. 24.

    D.N. Klyshko, Photons and Nonlinear Optics (Gordon and Breach, New York, 1988)

    Google Scholar 

  25. 25.

    G.Kh. Kitaeva, A.N. Penin, JETP Lett. 82, 350 (2005)

    ADS  Article  Google Scholar 

  26. 26.

    A.V. Burlakov, M.V. Chekhova, D.N. Klyshko, S.P. Kulik, A.N. Penin, Y.H. Shih, D.V. Strekalov, Phys. Rev. A 56, 3214 (1997)

    ADS  Article  Google Scholar 

  27. 27.

    A.V. Burlakov, O.A. Karabutova, Yu.B. Mamaeva, D.Yu. Korystov, S.P. Kulik, M.V. Chekhova, Laser Phys. 12, 825 (2002)

    Google Scholar 

  28. 28.

    G.Kh. Kitaeva, S.P. Kovalev, A.N. Penin, A.N. Tuchak, P.V. Yakunin, J. Infrared Millim. Terahertz Waves 32, 1144 (2011)

    Article  Google Scholar 

  29. 29.

    A.S. Barker Jr., R. Loudon, Phys. Rev. 158, 433 (1967)

    ADS  Article  Google Scholar 

  30. 30.

    A.S. Barker Jr., Phys. Rev. 165, 917 (1968)

    ADS  Article  Google Scholar 

  31. 31.

    U.T. Schwarz, M. Maier, Phys. Rev. B 58, 766 (1998)

    ADS  Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. M.V. Chekhova, V.V. Kornienko, K.A. Grishunin, and Dr. D.V. Lopaev for the discussions and some helpful remarks. This study was supported by the Russian Foundation for Basic Research (Project Nos. 14-22-02091, 16-02-00258, 16-29-03294) and by Ministry of Education and Science of the Russian Federation (State Task No. 11.144.2014/K).

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. A. Kuznetsov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, K.A., Kitaeva, G.K., Kovalev, S.P. et al. Complex extraordinary dielectric function of Mg-doped lithium niobate crystals at terahertz frequencies. Appl. Phys. B 122, 223 (2016). https://doi.org/10.1007/s00340-016-6498-5

Download citation

Keywords

  • LiNbO3
  • Dielectric Function
  • Lithium Niobate
  • Defect Mode
  • Lithium Niobate Crystal