Advertisement

Applied Physics B

, 122:219 | Cite as

The application of a cavity ring-down spectrometer to measurements of ambient ammonia using traceable primary standard gas mixtures

  • Nicholas A. Martin
  • Valerio Ferracci
  • Nathan Cassidy
  • John A. Hoffnagle
Article

Abstract

A correction for the undesirable effects of direct and indirect cross-interference from water vapour on ammonia (NH3) measurements was developed using an optical laser sensor based on cavity ring-down spectroscopy. This correction relied on new measurements of the collisional broadening due to water vapour of two NH3 spectral lines in the near infra-red (6548.6 and 6548.8 cm−1), and on the development of novel stable primary standard gas mixtures (PSMs) of ammonia prepared by gravimetry in passivated gas cylinders at 100 μmol mol−1. The PSMs were diluted dynamically to provide calibration mixtures of dry and humidified ammonia atmospheres of known composition in the nmol mol−1 range and were employed as part of establishing a metrological traceability chain to improve the reliability and accuracy of ambient ammonia measurements. The successful implementation of this correction will allow the extension of this rapid on-line spectroscopic technique to exposure chamber validation tests under controlled conditions and ambient monitoring in the field.

Keywords

Doppler Width Amount Fraction Metrological Traceability Ambient Ammonia Repeatability Standard Deviation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We gratefully acknowledge the funding received from the Chemical and Biological Metrology Programme of the UK Department for Business, Innovation and Skills (BIS) and the European Metrology Research Programme (EMRP) of the European Union. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. © Crown copyright 2016 and reproduced by permission of the Controller of HMSO and the Queen’s Printer for Scotland.

References

  1. 1.
    M. Hornung, M.R. Ashmore, M.A. Sutton, Ammonia in the UK, Chapter 3 (DEFRA, London, 2002), pp. 24–33Google Scholar
  2. 2.
    C.E.R. Pitcairn, I.D. Leith, M.A. Sutton, D. Fowler, R.C. Munro, Y.S. Tang, D. Wilson, Environ. Pollut. 102, 41 (1998)CrossRefGoogle Scholar
  3. 3.
    Directive 2001/81/EC of the European Parliament and of the Council of 23 October 2001 on national emission ceilings for certain atmospheric pollutantsGoogle Scholar
  4. 4.
    Air Pollution and Climate Secretariat website, http://www.airclim.org/tags/clrtap. Accessed June 2016
  5. 5.
    Implementation of the National Emission Ceilings Directive website: http://ec.europa.eu/environment/air/pollutants/implem_nec_directive.htm. Accessed June 2016
  6. 6.
    Federal Ministry for Environment, Nature Conservation and Nuclear safety. First General Administrative Regulation Pertaining the Federal Immission Control Act (Technical Instructions on Air Quality Control—TA Luft) of 24 July 2002. (GMBI. [Gemaieisames Ministerialblatt-Joint Ministerial Gazette] p. 511) (Techniische Anlei-tung zur Reinhaltung der Luft-TA Luft)Google Scholar
  7. 7.
    B. Bessagnet, M. Beauchamp, C. Guerreiro, F. De Leeuw, S. Tsyro, A. Colette, F. Meleux, L. Rouil, P. Ruyssenaars, F. Sauter, G.J.M. Velders, V.L. Foltescu, J. Van Aardenne, Environ. Sci. Policy 44, 149 (2014)CrossRefGoogle Scholar
  8. 8.
    A. Pogány, D. Balslev-Harder, C.F. Braban, N. Cassidy, V. Ebert, V. Ferracci, T. Hieta, D. Leuenberger, N. Lüttschwager, N.A. Martin, C. Pascale, C. Tiebe, M.M. Twigg, O. Vaittinen, J. van Wijk, K. Wirtz, B. Niederhauser: 17th International Congress of Metrology 07003 (2015). doi: 10.1051/metrology/201507003
  9. 9.
    D.A. Anderson, J.C. Frisch, C.S. Masser, Appl. Opt. 23, 1238 (1984)ADSCrossRefGoogle Scholar
  10. 10.
    E. Crosson, B. Fidric, B. Paldus, S. Tan: Wavelength control for cavity ring-down spectrometer, US Patent 7,106,763 B2, Picarro, Inc. 2006Google Scholar
  11. 11.
    A.R. Awtry, J.H. Miller, Appl. Phys. B 75, 255 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    J.B. Leen, X.-Y. Yu, M. Gupta, D.S. Baer, J.M. Hubbe, C.D. Kluzek, J.M. Tomlinson, M.R. Hubbell, Environ. Sci. Technol. 47, 10446 (2013)Google Scholar
  13. 13.
    D.J. Miller, K. Sun, L. Tao, M.A. Khan, M.A. Zondlo, Atmos. Meas. Tech. 7, 81 (2014)CrossRefGoogle Scholar
  14. 14.
    K. Sun, Le Tao, D.J. Miller, M.A. Khan, M.A. Zondlo, Environ. Sci. Technol. 48, 3943 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    S. Schilt, Appl. Phys. B 100, 349 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    K. Owen, E. Es-sebbar, A. Farooq, J. Quant. Spectrosc. Radiat. Transf. 121, 56 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    R. Sur, R.M. Spearrin, W.Y. Peng, C.L. Strand, J.B. Jeffries, G.M. Enns, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transf. 175, 90 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    E.R. Crosson, Appl. Phys. B 92, 403 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    S. M. Tan, Wavelength measurement method based on combination of two signals in quadrature, US Patent 7,420,686 B2, Picarro, Inc. 2008Google Scholar
  20. 20.
    L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Faytl, J.-M. Flaud, R.R. Gamache, J.J. Harrison, J.-M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 130, 4 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    L. Galatry, Phys. Rev. 122, 1218 (1961)ADSCrossRefGoogle Scholar
  22. 22.
    P.L. Varghese, R.K. Hanson, Appl. Opt. 23, 2376 (1984)ADSCrossRefGoogle Scholar
  23. 23.
    A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, J. Domysławska, R.S. Traviński, R. Ciuryło, D. Lisak, J. Phys. Conf. Ser. 548, 012015 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    D. Lisak, A. Cygan, D. Bermejo, J.L. Domenech, J.T. Hodges, H. Tran, J. Quant. Sectrosc. Radiat. Transf. 164, 221 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    A.M.H. van der Veen, G. Nieuwenkamp, R.M. Wessel, M. Maruyama, G.S. Heo, Y.-D. Kim, D.M. Moon, B. Niederhauser, M. Quintilii, M.J.T. Milton, M.G. Cox, P.M. Harris, F.R. Guenther, G.C. Rhoderick, L.A. Konopelko, Y.A. Kustikov, V.V. Pankratov, D.N. Selukov, V.A. Petrov, E.V. Gromova, Metrologia 47, 08023 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Spectra-Seal™, Registration Nr. 3853813, 2010, BOC LimitedGoogle Scholar
  27. 27.
    Aculife™, Registration Nr. 4104439, 2012, Air Liquide America Specialty Gases LLCGoogle Scholar
  28. 28.
    International Organization for Standardization (ISO) 6142:2001. Gas analysis—Preparation of calibration gas mixtures—Gravimetric methodGoogle Scholar
  29. 29.
    J. Winderlich, H. Chen, C. Gerbeig, T. Seifert, O. Kolle, J.V. Larvič, C. Kaiser, A. Höfer, M. Heimann, Atmos. Meas. Tech. 3, 1113 (2010)CrossRefGoogle Scholar
  30. 30.
    I. M. Smith, Software for determining polynomial calibration functions by generalised least squares: user manual, NPL Report MS 11 (Teddington, 2010)Google Scholar
  31. 31.
    International Organization for Standardization (ISO) 6145-7:2010 Gas analysis: Preparation of calibration gas mixtures using dynamic volumetric methods. Part 7: Thermal mass-flow controllersGoogle Scholar

Copyright information

© Crown Copyright as represented by the National Physical Laboratory 2016

Authors and Affiliations

  • Nicholas A. Martin
    • 1
  • Valerio Ferracci
    • 1
    • 3
  • Nathan Cassidy
    • 1
  • John A. Hoffnagle
    • 2
  1. 1.Environment DivisionNational Physical Laboratory (NPL)TeddingtonUK
  2. 2.Picarro Inc.Santa ClaraUSA
  3. 3.Centre for Atmospheric Science, Department of ChemistryUniversity of CambridgeCambridgeUK

Personalised recommendations