Near-field-assisted localization: effect of size and filling factor of randomly distributed zinc oxide nanoneedles on multiple scattering and localization of light

Abstract

We investigate the influence of the diameter and the filling factor of randomly arranged ZnO nanoneedles on the multiple scattering and localization of light in disordered dielectrics. Coherent, ultra-broadband second-harmonic (SH) microscopy is used to probe the spatial localization of light in representative nm-sized ZnO arrays of needles. We observe strong fluctuations of the SH intensity inside different ZnO needle geometries. Comparison of the SH intensity distributions with predictions based on a one-parameter scaling model indicate that SH fluctuations can be taken as a quantitative measure for the degree of localization. Interestingly, the strongest localization signatures are found for densely packed arrays of thin needles with diameters in the range of only 30 nm range, despite the small scattering cross section of these needles. FDTD simulations indicate that in this case coupling of electric near-fields between neighbouring needles governs the localization.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    E. Abrahams (ed.), 50 years of anderson localization (World Scientific, Singapore, 2010), p. 597. http://www.worldscientific.com/worldscibooks/10.1142/7663

    Book  MATH  Google Scholar 

  2. 2.

    C. Rockstuhl, F. Lederer, K. Bittkau, T. Beckers, R. Carius, The impact of intermediate reflectors on light absorption in tandem solar cells with randomly textured surfaces. Appl. Phys. Lett. 94, 211101–211103 (2009)

    ADS  Article  Google Scholar 

  3. 3.

    M.A. Green, Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions. Prog. Photovolt. Res. Appl. 10, 235–241 (2002)

    Article  Google Scholar 

  4. 4.

    A. Polman, H.A. Atwater, Photonic design principles for ultrahigh-efficiency photovoltaics. Nat. Mat. 11, 174–177 (2012)

    Article  Google Scholar 

  5. 5.

    S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997)

    Article  Google Scholar 

  6. 6.

    J. Steidtner, B. Pettinger, Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys. Rev. Lett. 100, 236101 (2008)

    ADS  Article  Google Scholar 

  7. 7.

    P.-E. Wolf, G. Maret, Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett. 55, 2696 (1985)

    ADS  Article  Google Scholar 

  8. 8.

    D.S. Wiersma, P. Bartolini, A. Lagendijk, R. Righini, Localization of light in a disordered medium. Nature 390, 671–673 (1997)

    ADS  Article  Google Scholar 

  9. 9.

    M.P.V. Albada, A. Lagendijk, Observation of weak localization of light in a random medium. Phys. Rev. Lett. 55, 2692 (1985)

    ADS  Article  Google Scholar 

  10. 10.

    H. Cao, Y.G. Zhao, H.C. Ong, R.P.H. Chang, Far-field characteristics of random lasers. Phys. Rev. B 59, 15107–15111 (1999)

    ADS  Article  Google Scholar 

  11. 11.

    J. Fallert, R.J.B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, H. Kalt, Co-existence of strongly and weakly localized random laser modes. Nat. Photon. 3, 279–282 (2009)

    ADS  Article  Google Scholar 

  12. 12.

    D.S. Wiersma, The physics and applications of random lasers. Nat. Phys. 4, 359–367 (2008)

    Article  Google Scholar 

  13. 13.

    X. Wu, W. Fang, A. Yamilov, A.A. Chabanov, A.A. Asatryan, L.C. Botten, H. Cao, Random lasing in weakly scattering systems. Phys. Rev. A 74, 053812 (2006)

    ADS  Article  Google Scholar 

  14. 14.

    S.I. Bozhevolnyi, J. Beermann, V. Coello, Direct observation of localized second-harmonic enhancement in random metal nanostructures. Phys. Rev. Lett. 90, 197403 (2003)

    ADS  Article  Google Scholar 

  15. 15.

    C. Anceau, S. Brasselet, J. Zyss, P. Gadenne, Local second-harmonic generation enhancement on gold nanostructures probed by two-photon microscopy. Opt. Lett. 28, 713–715 (2003)

    ADS  Article  Google Scholar 

  16. 16.

    M.I. Stockman, D.J. Bergman, C. Anceau, S. Brasselet, J. Zyss, Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations. Phys. Rev. Lett. 92, 057402 (2004)

    ADS  Article  Google Scholar 

  17. 17.

    S. Gresillon, L. Aigouy, A.C. Boccara, J.C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V.A. Shubin, A.K. Sarychev, V.M. Shalaev, Experimental observation of localized optical excitations in random metal-dielectric films. Phys. Rev. Lett. 82, 4520–4523 (1999)

    ADS  Article  Google Scholar 

  18. 18.

    L. Sapienza, H. Thyrrestrup, S. Stobbe, P.D. Garcia, S. Smolka, P. Lodahl, Cavity quantum electrodynamics with Anderson-localized modes. Science 327, 1352–1355 (2010)

    ADS  Article  Google Scholar 

  19. 19.

    C. Caer, X. Le Roux, E. Cassan, Enhanced localization of light in slow wave slot photonic crystal waveguides. Opt. Lett. 37, 3660–3662 (2012)

    ADS  Article  Google Scholar 

  20. 20.

    S. Stützer, Y.V. Kartashov, V.A. Vysloukh, A. Tünnermann, S. Nolte, M. Lewenstein, L. Torner, A. Szameit, Anderson cross-localization. Opt. Lett. 37, 1715–1717 (2012)

    ADS  Article  Google Scholar 

  21. 21.

    C. Conti, A. Fratalocchi, Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals. Nat. Phys. 4, 794–798 (2008)

    Article  Google Scholar 

  22. 22.

    S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    ADS  Article  Google Scholar 

  23. 23.

    M. Mascheck, S. Schmidt, M. Silies, T. Yatsui, K. Kitamura, M. Ohtsu, D. Leipold, E. Runge, C. Lienau, Observing the localization of light in space and time by ultrafast second-harmonic microscopy. Nat. Photonics 6, 293–298 (2012)

    ADS  Article  Google Scholar 

  24. 24.

    I.M. Vellekoop, A.P. Mosk, Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007)

    ADS  Article  Google Scholar 

  25. 25.

    E. Abrahams, P.W. Anderson, D.C. Licciardello, T.V. Ramakrishnan, Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673 (1979)

    ADS  Article  Google Scholar 

  26. 26.

    D.J. Thouless, Electrons in disordered systems and the theory of localization. Phys. Rep. 13, 93–142 (1974)

    ADS  Article  Google Scholar 

  27. 27.

    K. Busch, C.M. Soukoulis, E.N. Economou, Transport and scattering mean free paths of classical waves. Phys. Rev. B 50, 93–98 (1994)

    ADS  Article  Google Scholar 

  28. 28.

    H. Cao, Y.G. Zhao, S.T. Ho, E.W. Seelig, Q.H. Wang, R.P.H. Chang, Random laser action in semiconductor powder. Phys. Rev. Lett. 82, 2278–2281 (1999)

    ADS  Article  Google Scholar 

  29. 29.

    H. Cao, J.Y. Xu, D.Z. Zhang, S.H. Chang, S.T. Ho, E.W. Seelig, X. Liu, R.P.H. Chang, Spatial confinement of laser light in active random media. Phys. Rev. Lett. 84, 5584–5587 (2000)

    ADS  Article  Google Scholar 

  30. 30.

    U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041103–041301 (2005)

    Article  Google Scholar 

  31. 31.

    V. Srikant, D.R. Clarke, On the optical band gap of zinc oxide. J. Appl. Phys. 83, 5447–5451 (1998)

    ADS  Article  Google Scholar 

  32. 32.

    A.B. Djurišić, Y. Chan, E.H. Li, The optical dielectric function of ZnO. Appl. Phys. A 76, 37–43 (2003)

    ADS  Article  Google Scholar 

  33. 33.

    A.B. Djurisić, Y.H. Leung, Optical properties of ZnO nanostructures. Small 2, 944–961 (2006)

    Article  Google Scholar 

  34. 34.

    B. Piglosiewicz, D. Sadiq, M. Mascheck, S. Schmidt, M. Silies, P. Vasa, C. Lienau, Ultrasmall bullets of light? focusing few-cycle light pulses to the diffraction limit. Opt. Express 19, 14451–14463 (2011)

    ADS  Article  Google Scholar 

  35. 35.

    S. Schmidt, M. Mascheck, M. Silies, T. Yatsui, K. Kitamura, M. Ohtsu, C. Lienau, Distinguishing between ultrafast optical harmonic generation and multi-photon-induced luminescence from ZnO thin films by frequency-resolved interferometric autocorrelation microscopy. Opt. Express 18, 25016–25028 (2010)

    ADS  Article  Google Scholar 

  36. 36.

    J. Sartor, F. Maier-Flaig, J. Conradt, J. Fallert, H. Kalt, D. Weissenberger, D. Gerthsen, Modifying growth conditions of ZnO nanorods for solar cell applications. Phys. Status Solidi (c) 7, 1583–1585 (2010)

    ADS  Article  Google Scholar 

  37. 37.

    H. Zhou, J. Fallert, J. Sartor, R.J.B. Dietz, C. Klingshirn, H. Kalt, D. Weissenberger, D. Gerthsen, H. Zeng, W. Cai, Ordered n-type ZnO nanorod arrays. Appl. Phys. Lett. 92, 132112–132113 (2008)

    ADS  Article  Google Scholar 

  38. 38.

    K. Kitamura, T. Yatsui, M. Ohtsu, G.C. Yi, Fabrication of vertically aligned ultrafine ZnO nanorods using metal-organic vapor phase epitaxy with a two-temperature growth method. Nanotechnology 19, 175305 (2008)

    ADS  Article  Google Scholar 

  39. 39.

    R. Hauschild, H. Lange, H. Priller, C. Klingshirn, R. Kling, A. Waag, H.J. Fan, M. Zacharias, H. Kalt, Stimulated emission from ZnO nanorods. Phys. Status Solidi (b) 243, 853–857 (2006)

    ADS  Article  Google Scholar 

  40. 40.

    D.S. Kim, S.C. Hohng, V. Malyarchuk, Y.C. Yoon, Y.H. Ahn, K.J. Yee, J.W. Park, J. Kim, Q.H. Park, C. Lienau, Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures. Phys. Rev. Lett. 91, 143901 (2003)

    ADS  Article  Google Scholar 

  41. 41.

    D.C. Dai, S.J. Xu, S.L. Shi, M.H. Xie, C.M. Che, Efficient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature. Opt. Lett. 30, 3377–3379 (2005)

    ADS  Article  Google Scholar 

  42. 42.

    G. Stibenz, G. Steinmeyer, Interferometric frequency-resolved optical gating. Opt. Express 13, 2617–2626 (2005)

    ADS  Article  Google Scholar 

  43. 43.

    A. Richardella, P. Roushan, S. Mack, B. Zhou, D.A. Huse, D.D. Awschalom, A. Yazdani, Visualizing critical correlations near the metal-insulator transition in ga1-xMnxAs. Science 327, 665–669 (2010)

    ADS  Article  Google Scholar 

  44. 44.

    I.V. Lerner, Distribution functions of current density and local density of states in disordered quantum conductors. Phys. Lett. A 133, 253–259 (1988)

    ADS  Article  Google Scholar 

  45. 45.

    B.L. Altshuler, V.E. Kravtsov, I.V. Lerner, Applicability of scaling description to the distribution of mesoscopic fluctuations. Phys. Lett. A 134, 488–492 (1989)

    ADS  Article  Google Scholar 

  46. 46.

    F. Riboli, P. Barthelemy, S. Vignolini, F. Intonti, A. De Rossi, S. Combrie, D.S. Wiersma, Anderson localization of near-visible light in two dimensions. Opt. Lett. 36, 127–129 (2011)

    ADS  Article  Google Scholar 

  47. 47.

    V. Dobrosavljević, E. Abrahams, E. Miranda, S. Chakravarty, Scaling theory of two-dimensional metal-insulator transitions. Phys. Rev. Lett. 79, 455–458 (1997)

    ADS  Article  Google Scholar 

  48. 48.

    C. Castellani, G. Kotliar, P.A. Lee, Fermi-liquid theory of interacting disordered systems and the scaling theory of the metal-insulator transition. Phys. Rev. Lett. 59, 323–326 (1987)

    ADS  Article  Google Scholar 

  49. 49.

    T.M. Nieuwenhuizen, M.C.W. van Rossum, Intensity distributions of waves transmitted through a multiple scattering medium. Phys. Rev. Lett. 74, 2674 (1995)

    ADS  Article  Google Scholar 

  50. 50.

    A.F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson, Meep: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181, 687–702 (2010)

    ADS  Article  MATH  Google Scholar 

Download references

Acknowledgments

Financial support by the Deutsche Forschungsgemeinschaft (SPP1391, SPP1839 and DFG-NSF Materials World Network), the Japan Science and Technology Agency (JST) within the DFG-JST strategic programme “Nanoelectronics”, by the European Union (project “CRONOS”, Grant number 280879-2) the Korea Foundation for International Cooperation of Science and Technology (Global Research Laboratory project, K20815000003) and the German–Israeli Foundation (Grant no. 1256) is gratefully acknowledged. M.S. wishes to thank the BMBF for a personal research grant “Photonic transistors” in the NanoMatFutur program. J.S. and H.K acknowledge support by the Deutsche Forschungsgemeinschaft (KL345/23-2) and the Karlsruhe School of Optics and Photonics (KSOP).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martin Silies.

Additional information

This article is part of the topical collection “Ultrafast Nanooptics” guest edited by Martin Aeschlimann and Walter Pfeiffer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Silies, M., Mascheck, M., Leipold, D. et al. Near-field-assisted localization: effect of size and filling factor of randomly distributed zinc oxide nanoneedles on multiple scattering and localization of light. Appl. Phys. B 122, 181 (2016). https://doi.org/10.1007/s00340-016-6456-2

Download citation

Keywords

  • Filling Factor
  • Random Laser
  • Thin Needle
  • Light Localization
  • Needle Structure