Skip to main content
Log in

Fabrication of broadband antireflective black metal surfaces with ultra-light-trapping structures by picosecond laser texturing and chemical fluorination

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A hybrid method consisting of ultrafast laser-assisted texturing and chemical fluorination treatment was applied for efficiently enhancing the surface broadband antireflection to fabricate black titanium alloy surface with ultra-light-trapping micro-nanostructure. Based on the theoretical analysis of surface antireflective principle of micro-nanostructures and fluoride film, the ultra-light-trapping micro-nanostructures have been processed using a picosecond pulsed ultrafast laser on titanium alloy surfaces. Then fluorination treatment has been performed by using fluoroalkyl silane solution. According to X-ray diffraction phase analysis of the surface compositions and measurement of the surface reflectance using spectrophotometer, the broadband antireflective properties of titanium alloy surface with micro-nano structural characteristics were investigated before and after fluorination treatment. The results show that the surface morphology of micro-nanostructures processed by picosecond laser has significant effects on the antireflection of light waves to reduce the surface reflectance, which can be further reduced using chemical fluorination treatment. The high antireflection of over 98 % in a broad spectral range from ultraviolet to infrared on the surface of metal material has been achieved for the surface structures, and the broadband antireflective black metal surfaces with an extremely low reflectance of ultra-light-trapping structures have been obtained in the wavelength range from ultraviolet–visible to near-infrared, middle-wave infrared. The average reflectance of microgroove groups structured surface reaches as low as 2.43 % over a broad wavelength range from 200 to 2600 nm. It indicates that the hybrid method comprising of picosecond laser texturing and chemical fluorination can effectively induce the broadband antireflective black metal surface. This method has a potential application for fabricating antireflective surface used to improve the photothermal or photoelectric conversion efficiency of solar installations and enhancing the surface wave-absorbing capacity of devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Panek, M. Lipinski, J. Dutkiewicz, J. Mater. Sci. 40(6), 1459–1463 (2005)

    Article  ADS  Google Scholar 

  2. M. Spiegel, C. Gerhards, F. Huster, W. Jooss, P. Fath, E. Bucher, Sol. Energy Mater. Sol. Cells 74(1–4), 175–182 (2002)

    Article  Google Scholar 

  3. J. Yoo, G. Yu, J. Yi, Mater. Sci. Eng. B Adv. Funct. Solid-State Mater. 159–160, 333–337 (2009)

    Article  Google Scholar 

  4. L.A. Dobrzanski, A. Drygala, K. Golombek, P. Panek, E. Bielanska, P. Zieba, J. Mater. Process. Technol. 201(1–3), 291–296 (2008)

    Article  Google Scholar 

  5. A.A. Ionin, Y.M. Klimachev, A.Y. Kozlov, S.I. Kudryashov, A.E. Ligachev, S.V. Makarov, L.V. Seleznev, D.V. Sinitsyn, A.A. Rudenko, R.A. Khmelnitsky, Appl. Phys. B Lasers Opt. 111(3), 419–423 (2013)

    Article  ADS  Google Scholar 

  6. A.Y. Vorobyev, C. Guo, Appl. Phys. Lett. 92(4), 041914 (2008)

    Article  ADS  Google Scholar 

  7. B. Zheng, W. Wang, G. Jiang, K. Wang, X. Mei, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 229(11), 1877–1892 (2015)

    Article  Google Scholar 

  8. H. Huang, L.M. Yang, S. Bai, J. Liu, Appl. Opt. 54(2), 324–333 (2015)

    Article  ADS  Google Scholar 

  9. S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, J. Bonse, Appl. Surf. Sci. 336, 39–42 (2015)

    Article  ADS  Google Scholar 

  10. M. Mielke, Laser Focus World 51(4), 49–53 (2015)

    Google Scholar 

  11. C. Mauclair, D. Pietroy, Y.D. Maïo, E. Baubeau, J.P. Colombier, R. Stoian, F. Pigeon, Opt. Lasers Eng. 67, 212–217 (2015)

    Article  Google Scholar 

  12. B. Zheng, G. Jiang, W. Wang, K. Wang, X. Mei, AIP Adv. 4(3), 031310 (2014)

    Article  ADS  Google Scholar 

  13. S.F. Toosi, S. Moradi, S. Kamal, S.G. Hatzikiriakos, Appl. Surf. Sci. 349, 715–723 (2015)

    Article  Google Scholar 

  14. J. Yong, F. Chen, Q. Yang, Y. Fang, J. Huo, X. Hou, Chem. Commun. 51(48), 9813–9816 (2015)

    Article  Google Scholar 

  15. D. Gong, J. Long, P. Fan, D. Jiang, H. Zhang, M. Zhong, Appl. Surf. Sci. 331, 437–443 (2015)

    Article  ADS  Google Scholar 

  16. A.Y. Vorobyev, C. Guo, J. Appl. Phys. 117(3), 033103 (2015)

    Article  ADS  Google Scholar 

  17. J. Long, M. Zhong, H. Zhang, P. Fan, J. Colloid Interface Sci. 441, 1–9 (2015)

    Article  Google Scholar 

  18. L.B. Boinovich, A.G. Domantovskiy, A.M. Emelyanenko, A.S. Pashinin, A.A. Ionin, S.I. Kudryashov, P.N. Saltuganov, ACS Appl. Mater. Interfaces 6(3), 2080–2085 (2014)

    Article  Google Scholar 

  19. Y. Xing, J. Deng, K. Zhang, G. Zhang, H. Gao, Int. J. Refract. Metals Hard Mater. 43, 291–301 (2014)

    Article  Google Scholar 

  20. R. Bathe, V.S. Krishna, S.K. Nikumb, G. Padmanabham, Appl. Phys. A Mater. Sci. Process. 117(1), 117–123 (2015)

    Article  ADS  Google Scholar 

  21. L. Hong, Rusli, X.C. Wang, H.Y. Zheng, H. Wang, H.Y. Yu, Appl. Surf. Sci. 297, 134–138 (2014)

    Article  ADS  Google Scholar 

  22. Z. Ou, M. Huang, F. Zhao, Opt. Express 22(14), 17254–17265 (2014)

    Article  ADS  Google Scholar 

  23. L. Ji, X. Lv, Y. Wu, Z. Lin, Y. Jiang, J. Photon. Energy 5, 053094 (2015)

    Article  Google Scholar 

  24. W. Liu, S.L. Chin, Phys. Rev. A 76(1), 013826 (2007)

    Article  ADS  Google Scholar 

  25. J. Long, P. Fan, D. Gong, D. Jiang, H. Zhang, L. Li, M. Zhong, ACS Appl. Mater. Interfaces 7(18), 9858–9865 (2015)

    Article  Google Scholar 

  26. J. Yong, Q. Yang, F. Chen, D. Zhang, H. Bian, Y. Ou, J. Si, G. Du, X. Hou, Appl. Phys. A Mater. Sci. Process. 111(1), 243–249 (2013)

    Article  ADS  Google Scholar 

  27. D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, R. Qiu, C. Maple, J. Appl. Phys. 115(23), 233101 (2014)

    Article  ADS  Google Scholar 

  28. N.E. Stankova, P.A. Atanasov, N.N. Nedyalkov, T.R. Stoyanchov, K.N. Kolev, E.I. Valova, J.S. Georgieva, A. St. Armyanov, S. Amoruso, X. Wang, R. Bruzzese, K. Grochowska, G. Śliwiński, K. Baert, A. Hubin, M.P. Delplancke, J. Dille, Appl. Surf. Sci. 336, 321–328 (2015)

    Article  ADS  Google Scholar 

  29. M. Erdoğan, B. Öktem, H. Kalaycioğlu, S. Yavaş, P.K. Mukhopadhyay, K. Eken, K. Özgören, Y. Aykaç, U.H. Tazebay, F.Ö. Ilday, Opt. Express 19(11), 10986–10996 (2011)

    Article  ADS  Google Scholar 

  30. F. Hendricks, R. Patel, V.V. Matylitsky, in Proceedings of SPIE 9355, Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XV, 935502 (March 9, 2015)

  31. C. McDaniel, O. Gladkovskaya, A. Flanagan, Y. Rochev, G.M. O’Connor, RSC Adv. 5(53), 42548–42558 (2015)

    Article  Google Scholar 

  32. R. Torres, V. Vervisch, M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, J. Ferreira, D. Barakel, S. Bastide, F. Torregrosa, H. Etienne, L. Roux, J. Optoelectron. Adv. Mater. 12(3), 621–625 (2010)

    Google Scholar 

  33. B.K. Nayak, V.V. Iyengar, M.C. Gupta, Prog. Photovolt. Res. Appl. 19(6), 631–639 (2011)

    Article  Google Scholar 

  34. V.V. Iyengar, B.K. Nayak, K.L. More, H.M. Meyer III, M.D. Biegalski, J.V. Li, M.C. Gupta, Sol. Energy Mater. Sol. Cells 95(10), 2745–2751 (2011)

    Article  Google Scholar 

  35. H.K. Raut, V.A. Ganesh, A.S. Nair, S. Ramakrishna, Energy Environ. Sci. 4(10), 3779–3804 (2011)

    Article  Google Scholar 

  36. A.Y. Vorobyev, C. Guo, J. Appl. Phys. 104(5), 053516 (2008)

    Article  ADS  Google Scholar 

  37. A.Y. Vorobyev, C. Guo, in Biosciences World 2010, Proceedings of 2010 International Conference on Biosciences, pp. 135–138 (March 7–13, 2010)

  38. A.Y. Vorobyev, C. Guo, in Proceedings of 52nd IEEE International Midwest Symposium on Circuits and Systems, pp. 905–908 (August 2–5, 2009)

  39. A.Y. Vorobyev, A.N. Topkov, O.V. Gurin, V.A. Svich, C. Guo, Appl. Phys. Lett. 95(12), 121106 (2009)

    Article  ADS  Google Scholar 

  40. V.V. Iyengar, B.K. Nayak, M.C. Gupta, Appl. Opt. 49(31), 5983–5988 (2010)

    Article  ADS  Google Scholar 

  41. N. Singh, D.R. Alexander, J. Schiffern, D. Doerr, J. Laser Appl. 18(3), 242–244 (2006)

    Article  Google Scholar 

  42. J. Meng, H. Song, X. Li, S. Liu, Appl. Phys. A Mater. Sci. Process. 118(4), 1197–1203 (2015)

    Article  ADS  Google Scholar 

  43. L. Ji, X. Lv, Y. Wu, Z. Lin, Y. Jiang, in Proceeding of SPIE 9351, Laser-based Micro- and Nanoprocessing IX, 93511R (March 12, 2015)

  44. B. Zheng, G. Jiang, W. Wang, X. Mei, J. Xi’an Jiaotong Univ. 48(12), 21–28 (2014)

    Google Scholar 

  45. L. Yao, J. He, Prog. Mater Sci. 61, 94–143 (2014)

    Article  Google Scholar 

  46. W. Glaubitt, P. Löbmann, J. Eur. Ceram. Soc. 32(11), 2995–2999 (2012)

    Article  Google Scholar 

  47. X.T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, A. Fujishima, Chem. Mater. 17(3), 696–700 (2005)

    Article  Google Scholar 

  48. A.B. Christiansen, G.P. Caringal, J.S. Clausen, M. Grajower, H. Taha, U. Levy, N.A. Mortensen, A. Kristensen, Sci. Rep. 5, 10563 (2015)

    Article  ADS  Google Scholar 

  49. F.L. Gonzalez, M.J. Gordon, Opt. Lett. 40(7), 1512–1515 (2015)

    Article  ADS  Google Scholar 

  50. J.W. Leem, X.Y. Guan, M. Choi, J.S. Yu, Sol. Energy Mater. Sol. Cells 134, 45–53 (2015)

    Article  Google Scholar 

  51. B. Arkles, ChemTech 7(12), 766–778 (1977)

    Google Scholar 

  52. P. Moro, S. Stampachiacchiere, M.P. Donzello, G. Fierro, G. Moretti, Appl. Surf. Sci. 359, 293–305 (2015)

    Article  ADS  Google Scholar 

  53. VYu. Fominski, S.N. Grigoriev, R.I. Romanov, M.A. Volosova, M.V. Demin, Vacuum 119, 19–29 (2015)

    Article  ADS  Google Scholar 

  54. D. Takir, V. Reddy, J.A. Sanchez, L. Le Corre, P.S. Hardersen, A. Nathues, Astrophys. J. Lett. 804(1), L13 (2015)

    Article  ADS  Google Scholar 

  55. S. Alex, K. Chattopadhyay, B. Basu, Sol. Energy Mater. Sol. Cells 149, 66–74 (2016)

    Article  Google Scholar 

  56. L. Kotsedi, P. Mthunzi, Z.Y. Nuru, S.M. Eaton, P. Sechoghela, N. Mongwaketsi, R. Ramponi, M. Maaza, Appl. Surf. Sci. 353, 1334–1341 (2015)

    Article  ADS  Google Scholar 

  57. S. Coyle, M.C. Netti, J.J. Baumberg, M.A. Ghanem, P.R. Birkin, P.N. Bartlett, D.M. Whittaker, Phys. Rev. Lett. 87(17), 176801 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Nos. 51475361 and 91323033), Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT1172) and Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. xjj2012113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, B., Wang, W., Jiang, G. et al. Fabrication of broadband antireflective black metal surfaces with ultra-light-trapping structures by picosecond laser texturing and chemical fluorination. Appl. Phys. B 122, 180 (2016). https://doi.org/10.1007/s00340-016-6449-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6449-1

Keywords

Navigation