Optical fiber tip-based quartz-enhanced photoacoustic sensor for trace gas detection

Abstract

We reported the development of an evanescent-wave quartz-enhanced photoacoustic sensor (EW-QEPAS) using a single-mode optical fiber tip for sensitive gas detection in the extended near-infrared region. It is a spectroscopic technique based on the combination of quartz-enhanced photoacoustic spectroscopy with fiber-optic evanescent-wave absorption to achieve low optical noise, easy optical alignment, and high compactness. Carbon monoxide (CO) detection at 2.3 μm using a fiber-coupled, continuous-wave, distributed-feedback laser was selected for the sensor demonstration. By tapering the optical fiber down to 2.5 μm diameter using the flame-brushing technique, an evanescent field of ~0.6 mW around the fiber tip was absorbed by CO molecules. Besides an excellent linear response (R 2 = 0.9996) to CO concentrations, the EW-QEPAS sensor achieved a normalized noise-equivalent absorption (NNEA) coefficient of 8.6 × 10−8 cm−1W/√Hz for an incident optical power of 1.8 mW and integration time of 1 s. The sensor detection sensitivity can be further improved by enhancing the evanescent-wave power on the fiber tip.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    A.A. Kosterev, Y.A. Bakhirkin, R.F. Curl, F.K. Tittel, Opt. Lett. 27, 1902 (2002)

    ADS  Article  Google Scholar 

  2. 2.

    A.A. Kosterev, F.K. Tittel, D.V. Serebryakov, A.L. Malinovsky, I.V. Morozov, Rev. Sci. Instrum. 76, 043105 (2005)

    ADS  Article  Google Scholar 

  3. 3.

    P. Patimisco, G. Scamarcio, F.K. Tittel, V. Spagnolo, Sensors 14, 6165 (2014)

    Article  Google Scholar 

  4. 4.

    H. Yi, R. Maamary, X. Gao, M.W. Sigrist, E. Fertein, W. Chen, Appl. Phys. Lett. 106, 101109 (2015)

    ADS  Article  Google Scholar 

  5. 5.

    W. Ren, W. Jiang, N.P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L.C. Hughes, R.J. Griffin, F.K. Tittel, Appl. Phys. Lett. 104, 041117 (2014)

    ADS  Article  Google Scholar 

  6. 6.

    P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F.K. Tittel, V. Spagnolo, Sens. Actuators B Chem. 227, 539 (2016)

    Article  Google Scholar 

  7. 7.

    A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F.K. Tittel, V. Spagnolo, Appl. Phys. Lett. 107, 231102 (2015)

    ADS  Article  Google Scholar 

  8. 8.

    H. Zheng, L. Dong, A. Sampaolo, H. Wu, P. Patimisco, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, F.K. Tittel, Opt. Lett. 41, 978 (2016)

    ADS  Article  Google Scholar 

  9. 9.

    Y. Ma, R. Lewicki, M. Razeghi, F.K. Tittel, Opt. Express 21, 1008 (2013)

    ADS  Article  Google Scholar 

  10. 10.

    M. Jahjah, S. Belahsene, L. Nähle, M. Fischer, J. Koeth, Y. Rouillard, A. Vicet, Opt. Lett. 37, 2502 (2012)

    ADS  Article  Google Scholar 

  11. 11.

    R. Blue, A. Duduś, D. Uttamchandani, IEEE J. Sel. Top. Quantum Electron. 22, 1 (2016)

    Article  Google Scholar 

  12. 12.

    H. Tai, T. Yoshino, H. Tanaka, Opt. Lett. 12, 437 (1987)

    ADS  Article  Google Scholar 

  13. 13.

    G. Stewart, W. Jin, B. Culshaw, Sens. Actuators B Chem. 38, 42 (1997)

    Article  Google Scholar 

  14. 14.

    M. Tabib-Azar, B. Sutapun, R. Petrick, A. Kazemi, Sens. Actuators B Chem. 56, 158 (1999)

    Article  Google Scholar 

  15. 15.

    W. Jin, H. Xuan, C. Wang, W. Jin, Y. Wang, Opt. Express 22, 28132 (2014)

    ADS  Article  Google Scholar 

  16. 16.

    Y. Cao, W. Jin, L.H. Ho, Z. Liu, Opt. Lett. 37, 214 (2012)

    ADS  Article  Google Scholar 

  17. 17.

    L. Dong, A.A. Kosterev, D. Thomazy, F.K. Tittel, Appl. Phys. B 100, 627 (2010)

    ADS  Article  Google Scholar 

  18. 18.

    J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, A. Forchel, Spectrochim. Acta A Mol. Biomol. Spectrosc. 60, 3243 (2004)

    ADS  Article  Google Scholar 

  19. 19.

    A. Layeghi, H. Latifi, O. Frazão, IEEE Photonics Technol. Lett. 26, 1904 (2014)

    ADS  Article  Google Scholar 

  20. 20.

    L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.-P. Champion, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, S. Fally, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, S.N. Mikhailenko, C.E. Miller, N. Moazzen-Ahmadi, O.V. Naumenko, A.V. Nikitin, J. Orphal, V.I. Perevalov, A. Perrin, A. Predoi-Cross, C.P. Rinsland, M. Rotger, M. Šimečková, M.A.H. Smith, K. Sung, S.A. Tashkun, J. Tennyson, R.A. Toth, A.C. Vandaele, J. Vander Auwera, J. Quant. Spectrosc. Radiat. Transf. 110, 533 (2009)

    ADS  Article  Google Scholar 

  21. 21.

    M. Jahjah, W. Ren, P. Stefański, R. Lewicki, J. Zhang, W. Jiang, J. Tarka, F.K. Tittel, Analyst 139, 2065 (2014)

    ADS  Article  Google Scholar 

  22. 22.

    P. Werle, R. Mücke, F. Slemr, Appl. Phys. B 57, 131 (1993)

    ADS  Article  Google Scholar 

  23. 23.

    P. Werle, Appl. Phys. B 102, 313 (2011)

    ADS  Article  Google Scholar 

  24. 24.

    W.M. Geiger, M.W. Raynor, Trace Analysis of Specialty and Electronic Gases (Wiley, New Jersey, Hoboken, 2013)

Download references

Acknowledgments

This research is supported by the Early Career Scheme (ECS) grant from the Research Grants Council of the Hong Kong SAR, China (24208515); Shun Hing Institute of Advanced Engineering grant (RNE-p2-15); and CUHK Direct Grant for Research. We thank Prof. Wei Jin’s group from Hong Kong Polytechnic University for the use of their equipment.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wei Ren.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wang, Z., Wang, C. et al. Optical fiber tip-based quartz-enhanced photoacoustic sensor for trace gas detection. Appl. Phys. B 122, 147 (2016). https://doi.org/10.1007/s00340-016-6435-7

Download citation

Keywords

  • HONO
  • Evanescent Field
  • Photoacoustic Signal
  • Quartz Tuning Fork
  • Incident Optical Power