Advertisement

Applied Physics B

, 122:147 | Cite as

Optical fiber tip-based quartz-enhanced photoacoustic sensor for trace gas detection

  • Zhili Li
  • Zhen Wang
  • Chao Wang
  • Wei RenEmail author
Article

Abstract

We reported the development of an evanescent-wave quartz-enhanced photoacoustic sensor (EW-QEPAS) using a single-mode optical fiber tip for sensitive gas detection in the extended near-infrared region. It is a spectroscopic technique based on the combination of quartz-enhanced photoacoustic spectroscopy with fiber-optic evanescent-wave absorption to achieve low optical noise, easy optical alignment, and high compactness. Carbon monoxide (CO) detection at 2.3 μm using a fiber-coupled, continuous-wave, distributed-feedback laser was selected for the sensor demonstration. By tapering the optical fiber down to 2.5 μm diameter using the flame-brushing technique, an evanescent field of ~0.6 mW around the fiber tip was absorbed by CO molecules. Besides an excellent linear response (R 2 = 0.9996) to CO concentrations, the EW-QEPAS sensor achieved a normalized noise-equivalent absorption (NNEA) coefficient of 8.6 × 10−8 cm−1W/√Hz for an incident optical power of 1.8 mW and integration time of 1 s. The sensor detection sensitivity can be further improved by enhancing the evanescent-wave power on the fiber tip.

Keywords

HONO Evanescent Field Photoacoustic Signal Quartz Tuning Fork Incident Optical Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research is supported by the Early Career Scheme (ECS) grant from the Research Grants Council of the Hong Kong SAR, China (24208515); Shun Hing Institute of Advanced Engineering grant (RNE-p2-15); and CUHK Direct Grant for Research. We thank Prof. Wei Jin’s group from Hong Kong Polytechnic University for the use of their equipment.

References

  1. 1.
    A.A. Kosterev, Y.A. Bakhirkin, R.F. Curl, F.K. Tittel, Opt. Lett. 27, 1902 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    A.A. Kosterev, F.K. Tittel, D.V. Serebryakov, A.L. Malinovsky, I.V. Morozov, Rev. Sci. Instrum. 76, 043105 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    P. Patimisco, G. Scamarcio, F.K. Tittel, V. Spagnolo, Sensors 14, 6165 (2014)CrossRefGoogle Scholar
  4. 4.
    H. Yi, R. Maamary, X. Gao, M.W. Sigrist, E. Fertein, W. Chen, Appl. Phys. Lett. 106, 101109 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    W. Ren, W. Jiang, N.P. Sanchez, P. Patimisco, V. Spagnolo, C. Zah, F. Xie, L.C. Hughes, R.J. Griffin, F.K. Tittel, Appl. Phys. Lett. 104, 041117 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F.K. Tittel, V. Spagnolo, Sens. Actuators B Chem. 227, 539 (2016)CrossRefGoogle Scholar
  7. 7.
    A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F.K. Tittel, V. Spagnolo, Appl. Phys. Lett. 107, 231102 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    H. Zheng, L. Dong, A. Sampaolo, H. Wu, P. Patimisco, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, F.K. Tittel, Opt. Lett. 41, 978 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Ma, R. Lewicki, M. Razeghi, F.K. Tittel, Opt. Express 21, 1008 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    M. Jahjah, S. Belahsene, L. Nähle, M. Fischer, J. Koeth, Y. Rouillard, A. Vicet, Opt. Lett. 37, 2502 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    R. Blue, A. Duduś, D. Uttamchandani, IEEE J. Sel. Top. Quantum Electron. 22, 1 (2016)CrossRefGoogle Scholar
  12. 12.
    H. Tai, T. Yoshino, H. Tanaka, Opt. Lett. 12, 437 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    G. Stewart, W. Jin, B. Culshaw, Sens. Actuators B Chem. 38, 42 (1997)CrossRefGoogle Scholar
  14. 14.
    M. Tabib-Azar, B. Sutapun, R. Petrick, A. Kazemi, Sens. Actuators B Chem. 56, 158 (1999)CrossRefGoogle Scholar
  15. 15.
    W. Jin, H. Xuan, C. Wang, W. Jin, Y. Wang, Opt. Express 22, 28132 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Cao, W. Jin, L.H. Ho, Z. Liu, Opt. Lett. 37, 214 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    L. Dong, A.A. Kosterev, D. Thomazy, F.K. Tittel, Appl. Phys. B 100, 627 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    J. Seufert, M. Fischer, M. Legge, J. Koeth, R. Werner, M. Kamp, A. Forchel, Spectrochim. Acta A Mol. Biomol. Spectrosc. 60, 3243 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    A. Layeghi, H. Latifi, O. Frazão, IEEE Photonics Technol. Lett. 26, 1904 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.-P. Champion, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, S. Fally, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, S.N. Mikhailenko, C.E. Miller, N. Moazzen-Ahmadi, O.V. Naumenko, A.V. Nikitin, J. Orphal, V.I. Perevalov, A. Perrin, A. Predoi-Cross, C.P. Rinsland, M. Rotger, M. Šimečková, M.A.H. Smith, K. Sung, S.A. Tashkun, J. Tennyson, R.A. Toth, A.C. Vandaele, J. Vander Auwera, J. Quant. Spectrosc. Radiat. Transf. 110, 533 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    M. Jahjah, W. Ren, P. Stefański, R. Lewicki, J. Zhang, W. Jiang, J. Tarka, F.K. Tittel, Analyst 139, 2065 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    P. Werle, R. Mücke, F. Slemr, Appl. Phys. B 57, 131 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    P. Werle, Appl. Phys. B 102, 313 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    W.M. Geiger, M.W. Raynor, Trace Analysis of Specialty and Electronic Gases (Wiley, New Jersey, Hoboken, 2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongNew TerritoriesHong Kong
  2. 2.Department of Electrical EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong

Personalised recommendations