Skip to main content
Log in

Temperature sensitivity of molecular oxygen resonant-enhanced multiphoton ionization spectra involving the C 3Π g intermediate state

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The technique of measuring O2 rotational temperature by coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization (Radar REMPI) has been studied to determine temperature sensitivity and range. The molecular oxygen Rydberg state of \(\left( {3s\sigma } \right)C{{}^{3}}\Pi_{g} \left( {v^{\prime } = 2} \right)\) has been selected as the intermediate state in the 2 + 1 REMPI process, which is known to provide a relatively strong REMPI signal. Rotational-resolved spectra representing the two-photon \(C{{}^{3}}\Pi_{g} \left( {v^{\prime } = 2} \right) \leftarrow \leftarrow X{{}^{3}}\varSigma _{g}^{ - } \left( {v^{\prime \prime } = 0} \right)\) transition have been obtained under several gas conditions including pure oxygen, air-like syngas, ambient air, and flame environments from room temperature (~300 K) to flame temperature (~1700 K). An O2 REMPI spectral model has been developed to simulate the experimental spectral line intensity distribution which is dependent on the O2 ground-state temperature. The model has been verified at a low-temperature condition (~5 K) and then applied to various oxygen environments over an extended temperature range with an overall error of less than ±10 %. The current O2 REMPI spectral model is an improvement over a previously reported version in both accuracy and the quantity of lines fit to provide rotational temperature measurements. This work details an optimized model that fits simulated spectra to full experimental spectral bands over various conditions with a wide temperature range, including both low temperature (<300 K) and high temperature ranges (>1300 K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.H. Krupenie, The spectrum of molecular oxygen. J. Phys. Chem. Ref. Data 1(2), 423–534 (1972)

    Article  ADS  Google Scholar 

  2. A. Sur, C.V. Ramana, S.D. Colson, Optical-spectra of the lowest-Πg Rydberg states in O2. J. Chem. Phys. 83(2), 904–905 (1985)

    Article  ADS  Google Scholar 

  3. A. Sur, C.V. Ramana, W.A. Chupka, S.D. Colson, Rydberg-Valence interactions in the Pi-G states of O2. J. Chem. Phys. 84(1), 69–72 (1986)

    Article  ADS  Google Scholar 

  4. A. Sur, R.S. Friedman, P.J. Miller, Rotational dependence of the Rydberg Valence interactions in the 1-Πg states of molecular-oxygen. J. Chem. Phys. 94(3), 1704–1711 (1991)

    Article  ADS  Google Scholar 

  5. A. Sur, L. Nguyen, N. Nikoi, Franck–Condon overlap integrals between the 3 sσ 3Πg Rydberg and the 1–3Πg valence states of O2. J. Chem. Phys. 96(9), 6791–6795 (1992)

    Article  ADS  Google Scholar 

  6. R.O. Loo, W.J. Marinelli, P.L. Houston, S. Arepalli, J.R. Wiesenfeld, R.W. Field, Multiphoton ionization of O2 X 3Σ g , A1Δg, and B 1Σ +g via the 2-photon resonant Nsσg, Ndσg, and NdΠg Rydberg levels. J. Chem. Phys. 91(9), 5185–5200 (1989)

    Article  ADS  Google Scholar 

  7. R.R. Ogorzalek-Loo, (Cornell University, 1989)

  8. R.D. Johnson, G.R. Long, J.W. Hudgens, 2 photon resonance enhanced multiphoton ionization spectroscopy of gas-phase O2 α 1Δg between 305–350 Nm. J. Chem. Phys. 87(4), 1977–1981 (1987)

    Article  ADS  Google Scholar 

  9. J.S. Morrill, M.L. Ginter, E.S. Hwang, T.G. Slanger, R.A. Copeland, B.R. Lewis, S.T. Gibson, Two-photon REMPI spectra from a1Δg and b1Σ +g to d1Πg in O2. J. Mol. Spectrosc. 219(2), 200–216 (2003)

    Article  ADS  Google Scholar 

  10. J.S. Morrill, M.L. Ginter, B.R. Lewis, S.T. Gibson, The (X 2Πg) nsσg 1,3 Πg Rydberg states of O2: spectra, structures, and interactions. J. Chem. Phys. 111(1), 173–185 (1999)

    Article  ADS  Google Scholar 

  11. B.R. Lewis, S.T. Gibson, J.S. Morrill, M.L. Ginter, Perturbations in the 3 s sigma(g) (1,3)Pi(g) Rydberg states of O2: bound–bound interactions with the second (1)Pi(g) and (1)Delta(g) valence states. J. Chem. Phys. 111(1), 186–197 (1999)

    Article  ADS  Google Scholar 

  12. D.C. Cartwrig, W.J. Hunt, W. Williams, S. Trajmar, W.A. Goddard, Theoretical and experimental (electron-impact) studies of low-lying Rydberg states in O2. Phys. Rev. A 8(5), 2436–2448 (1973)

    Article  ADS  Google Scholar 

  13. T.A. York, J. Comer, Electron energy-loss studies of molecular-oxygen in the region 6.0–16.1 eV using a multidetector electron spectrometer. J. Phys. B: At. Mol. Opt. Phys. 16(19), 3627–3639 (1983)

    Article  ADS  Google Scholar 

  14. Y. Wu, Z.L. Zhang, T.M. Ombrello, Spatially resolved measurement of singlet delta oxygen by radar resonance-enhanced multiphoton ionization. Opt. Lett. 38(13), 2286–2288 (2013)

    Article  ADS  Google Scholar 

  15. Z.L. Zhang, M.N. Shneider, R.B. Miles, Coherent microwave rayleigh scattering from resonance-enhanced multiphoton ionization in argon. Phys. Rev. Lett. 98(26), 265005 (2007)

    Article  ADS  Google Scholar 

  16. M.N. Shneider, Z. Zhang, R.B. Miles, Plasma induced by resonance enhanced multiphoton ionization in inert gas. J. Appl. Phys. 102(12), 123103 (2007)

    Article  ADS  Google Scholar 

  17. Y. Wu, A. Bottom, Z.L. Zhang, T.M. Ombrello, V.R. Katta, Direct measurement of methyl radicals in a methane/air flame at atmospheric pressure by radar REMPI. Opt. Express 19(24), 23997–24004 (2011)

    Article  ADS  Google Scholar 

  18. Y. Wu, Z. Zhang, Two-dimensional quantitative measurements of methyl radicals in methane/air flame. Appl. Opt. 54(2), 157–162 (2015)

    Article  ADS  Google Scholar 

  19. S.T. Sanders, J. Wang, J.B. Jeffries, R.K. Hanson, Diode-laser absorption sensor for line-of-sight gas temperature distributions. Appl. Opt. 40(24), 4404–4415 (2001)

    Article  ADS  Google Scholar 

  20. M.C. Thurber, F. Grisch, R.K. Hanson, Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence. Opt. Lett. 22(4), 251–253 (1997)

    Article  ADS  Google Scholar 

  21. R.D. Hancock, K.E. Bertagnolli, R.P. Lucht, Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner. Combust. Flame 109(3), 323–331 (1997)

    Article  Google Scholar 

  22. J. Kojima, Q.V. Nguyen, Single-shot rotational Raman thermometry for turbulent flames using a low-resolution bandwidth technique. Meas. Sci. Technol. 19(1), 015406 (2008)

    Article  ADS  Google Scholar 

  23. S.F. Adams, Y. Wu, Z.L. Zhang, Oxygen rotational temperature determination using empirical analyses of C3Π(v′ = 2) ← X3Σ(v″ = 0) transitions. Appl. Spectrosc. 69(9), 1036–1041 (2015)

    Article  ADS  Google Scholar 

  24. Y. Wu, Z.L. Zhang, S.F. Adams, O2 rotational temperature measurements by coherent microwave scattering from REMPI. Chem. Phys. Lett. 513(4–6), 191–194 (2011)

    Article  ADS  Google Scholar 

  25. J. Sawyer, Y. Wu, Z.L. Zhang, S.F. Adams, O2 rotational temperature measurements in an atmospheric air microdischarge by radar resonance-enhanced multiphoton ionization. J. Appl. Phys. 113(23), 233304 (2013)

    Article  ADS  Google Scholar 

  26. Y. Wu, J. Sawyer, Z.L. Zhang, S.F. Adams, Flame temperature measurements by radar resonance-enhanced multiphoton ionization of molecular oxygen. Appl. Opt. 51(28), 6864–6869 (2012)

    Article  ADS  Google Scholar 

  27. C. Mainos, Multiphoton rotational line strength in diatomic-molecules and for states with Hunds-case-(a) or Hunds-case-(B) coupling. Phys. Rev. A 33(6), 3983–3992 (1986)

    Article  ADS  Google Scholar 

  28. S.F. Adams, J.M. Williamson, D.M. Fisher, Rotational temperature analysis of N2 by resonant enhanced multi-photon ionization with fluorescence detection. J. Appl. Phys. 110(8), 3309 (2011)

    Article  Google Scholar 

  29. N. Georgiev, M. Alden, Two-dimensional imaging of flame species using two-photon laser-induced fluorescence. Appl. Spectrosc. 51(8), 1229–1237 (1997)

    Article  ADS  Google Scholar 

  30. G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, J. W.C. Gardiner, V.V. Lissianski, Z. Qin, GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech

  31. J.M. Brown, A. Carrington, Rotational Spectroscopy of Diatomic Molecules,, vol. 8 (Cambridge University Press, Cambridge, 2003)

    Book  Google Scholar 

  32. G. Herzberg, Molecular Spectra and Molecular Structure. Volume I: Spectra of Diatomic Molecules, 2nd edn. (D. Van Nostrand, New York, 1950)

    Google Scholar 

  33. Y. Wu, Z.L. Zhang, N.B. Jiang, S. Roy, J.R. Gord, Resonant- and avalanche-ionization amplification of laser-induced plasma in air. J. Appl. Phys. 116(14), 143304 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by the AFOSR under Contract No. FA9550-14-1-0329 under Dr. Chiping Li.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhili Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zhang, Z. & Adams, S.F. Temperature sensitivity of molecular oxygen resonant-enhanced multiphoton ionization spectra involving the C 3Π g intermediate state. Appl. Phys. B 122, 149 (2016). https://doi.org/10.1007/s00340-016-6421-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6421-0

Keywords

Navigation